Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-5zjcf Total loading time: 0.439 Render date: 2022-08-17T01:05:13.994Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea

Published online by Cambridge University Press:  15 June 2012

M. Škaljac*
Affiliation:
Institute for Adriatic Crops, Department of Applied Sciences (Plant Protection), Put Duilova 11, 21000 Split, Croatia
K. Žanić
Affiliation:
Institute for Adriatic Crops, Department of Applied Sciences (Plant Protection), Put Duilova 11, 21000 Split, Croatia
S. Hrnčić
Affiliation:
Biotechnical Faculty, University of Montenegro, Mihaila Lalića 1, 81000 Podgorica, Montenegro
S. Radonjić
Affiliation:
Biotechnical Faculty, University of Montenegro, Mihaila Lalića 1, 81000 Podgorica, Montenegro
T. Perović
Affiliation:
Biotechnical Faculty, Centre for Suptropical Cultures, Topolica bb, 85000 Bar, Montenegro
M. Ghanim
Affiliation:
Institute of Plant Protection, Department of Entomology, Agricultural Research Organization, the Volcani Center, Bet Dagan 50250, Israel
*
*Author for correspondence Fax: +385 21 31 65 84 E-mail: marisa.skaljac@krs.hr

Abstract

Several whitefly species (Hemiptera: Aleyrodidae) are cosmopolitan phloem-feeders that cause serious damage in numerous agricultural crops. All whitefly species harbor a primary bacterial symbiont and a diverse array of secondary symbionts which may influence several aspects of the insect's biology. We surveyed infections by secondary symbionts in Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood) and Siphoninus phillyreae (Haliday) from areas in the east cost of the Adriatic Sea. Both the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) B. tabaci genetic groups were detected in Montenegro, whereas only the MED was confirmed in Croatia. Trialeurodes vaporariorum and S. phillyreae were found in all areas surveyed. MEAM1 and MED exhibited similarity to previously reported infections, while populations of T. vaporariorum from Montenegro harbored Rickettsia, Wolbachia and Cardinium in addition to previously reported Hamiltonella and Arsenopnohus. Siphoninus phillyreae harbored Hamiltonella, Wolbachia, Cardinium and Arsenophonus, with the latter appearing in two alleles. Multiple infections of all symbionts were common in the three insect species tested, with some reaching near fixation. Florescent in situ hybridization showed new localization patterns for Hamiltonella in S. phillyreae, and the morphology of the bacteriosome differed from that observed in other whitefly species. Our results show new infections with bacterial symbionts in the whitefly species studied. Infections with the same symbionts in reproductively isolated whitefly species confirm complex relationships between whiteflies and bacterial symbionts, and suggest possible horizontal transfer of some of these bacteria.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksoy, S., Chen, X. & Hypša, V. (1997) Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae). Insect Molecular Biology 6, 183190.CrossRefGoogle Scholar
Alemandri, V., De Barro, P., Bejerman, N., Argüello Caro, E.B., Dumon, A.D., Mattio, M.F., Rodriguez, S.M. & Truol, G. (2012) Species Within the Bemisia tabaci (Hemiptera: Aleyrodidae) Complex in Soybean and Bean Crops in Argentina. Journal of Economic Entomology 105, 4853.CrossRefGoogle ScholarPubMed
Baumann, P. (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology 59, 155189.CrossRefGoogle ScholarPubMed
Bensadia, F., Boudreault, S., Guay, J.-F., Michaud, D. & Cloutier, C. (2005) Aphid clonal resistance to a parasitoid fails under heat stress. Journal of Insect Physiology 52, 146157.CrossRefGoogle ScholarPubMed
Boykin, L.M., Shatters, R.G. Jr, Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P.J. & Frohlich, D.R. (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution 3, 13061319.CrossRefGoogle Scholar
Brown, J.K. (2007) The Bemisia tabaci complex: genetic and phenotypic variation and relevance toTYLCV-vector interactions. pp. 2557in Czosnek, H. (Ed.) Tomato Yellow Leaf Curl Virus Disease: Managment, Molecular Biology, Breeding for Resistance. Netherlands, Springer.CrossRefGoogle Scholar
Brown, J.K., Frohlich, D.R. & Rosell, R.C. (1995) The sweet-potato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology 40, 511534.CrossRefGoogle Scholar
Brumin, M., Kontsedalov, S. & Ghanim, M. (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Science 18, 5766.CrossRefGoogle Scholar
Buchner, P. (1965) Endosymbiosis of Animals with Plant Microorganisms. New York, USA, John Wiley and Sons.Google Scholar
Caspi-Fluger, A., Inbar, M., Mozes-Daube, N., Katzir, N., Portnoy, V., Belausov, E., Hunter, M.S. & Zchori-Fein, E. (2011) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proceeding of the Royal Society, Series B 279, 17911796.CrossRefGoogle ScholarPubMed
Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M. & Ghanim, M. (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research 97, 407413.CrossRefGoogle ScholarPubMed
Chu, D., Gao, C.S., De Barro, P., Zhang, Y.J., Wan, F.H. & Khan, I.A. (2011) Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: Comparison of secondary symbionts from biotypes B and Q in China. Bulletin of Entomological Research 101, 477486.CrossRefGoogle Scholar
Dale, C. & Moran, N.A. (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126(3), 453465.CrossRefGoogle ScholarPubMed
De Barro, P. & Ahmed, M.Z. (2011) Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS ONE 6(10), e25579 (doi:10.1371/journal.pone.0025579).CrossRefGoogle ScholarPubMed
De Barro, P.J., Scott, K.D., Graham, G.C., Lange, C.L. & Schutze, M.K. (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes 3, 4043.CrossRefGoogle Scholar
Dinsdale, A.B., Cook, L., Riginos, C., Buckley, Y.M. & De Barro, P. (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase I to identify species level genetic boundaries. Annals of the Entomological Society of America 103, 196208.CrossRefGoogle Scholar
Dyson, E.A., Kamath, M.K. & Hurst, G.D.D. (2002) Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 88, 166171.CrossRefGoogle ScholarPubMed
Everett, K.D.E., Thao, M.L., Horn, M., Dyszynski, G.E. & Baumann, P. (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. International Journal of Systematic and Evolutionary Microbiology 55, 15811587.CrossRefGoogle Scholar
Ferrari, J., Darby, A.C., Daniell, T.J., Godfray, H.C.J. & Douglas, A.E. (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecological Entomology 29, 6065.CrossRefGoogle Scholar
Gherna, R.L., Werren, J.H., Weisburg, W., Cote, R., Woese, C.R., Mandelco, L. & Brenner, D.J. (1991) Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. International Journal of Systematic Bacteriology 41, 563565.CrossRefGoogle Scholar
Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., Tzuri, G., Horowitz, A.R., Belausov, E., Mozes-Daube, N., Kontsedalov, S., Gershon, M., Gal, S., Katzir, N. & Zchori-Fein, E. (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Applied and Environmental Microbiology 72, 36463652.CrossRefGoogle Scholar
Gottlieb, Y., Ghanim, M., Gueguen, G., Kontsedalov, S., Vavre, F., Fleury, F. & Zchori-Fein, E. (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB Journal 22, 25912599.CrossRefGoogle ScholarPubMed
Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Kontsedalov, S., Skaljac, M., Brumin, M., Sobol, I., Czosnek, H., Vavre, F., Fleury, F. & Ghanim, M. (2010) The transmission efficiency of Tomato Yellow Leaf Curl Virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology 84, 93109317.CrossRefGoogle ScholarPubMed
Gueguen, G., Vavre, F., Gnankine, O., Peterschmitt, M., Charif, D., Chiel, E., Gottlieb, Y., Ghanim, M., Zchori-Fein, E. & Fleury, F. (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Molecular Ecology 19, 43654376.CrossRefGoogle ScholarPubMed
Himler, A.G., Adachi-Hagimori, T., Bergen, J.E., Kozuch, A., Kelly, S.E., Tabashnik, B.E., Chiel, E., Duckworth, V.E., Dennehy, T.J., Zchori-Fein, E. & Hunter, M.S. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332, 254256.CrossRefGoogle Scholar
Hu, J., De Barro, P., Zhao, H., Wang, J., Nardi, F. & Liu, S.S. (2011) An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE 6(1), e16061 (doi:10.1371/journal.pone.0016061).CrossRefGoogle Scholar
Ijichi, N., Kondo, N., Matsumoto, R., Shimada, M., Ishikawa, H. & Fukatsu, T. (2002) Internal spatiotemporal population dynamics of infection with three Wolbachia strains in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Applied and Environmental Microbiology 68, 40744080.CrossRefGoogle Scholar
Jones, D.R. (2003) Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195219.CrossRefGoogle Scholar
Kontsedalov, S., Zchori-Fein, E., Chiel, E., Gottlieb, Y., Inbar, M. & Ghanim, M. (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Management Science 64, 789792.CrossRefGoogle Scholar
Li, Z.X., Lin, H.Z. & Guo, X.P. (2007) Prevalence of Wolbachia infection in Bemisia tabaci. Current Microbiology 54, 467471.CrossRefGoogle ScholarPubMed
Miller, W.I., Pabbaraju, K. & Sanderson, K.E. (2000), Fragmentation of 23S rRNA in strains of Proteus and Providencia results from intervening sequences in the rm (rRNA) genes. Journal of Bacteriology 182, 11091117.CrossRefGoogle Scholar
Min, K.T. & Benzer, S. (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proceeding of the National Academy of Science USA 94, 1079210796.CrossRefGoogle ScholarPubMed
Mitsuhashi, W., Saiki, T., Wei, W., Kawakita, H. & Sato, M. (2002) Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Molecular Biology 11, 577584.CrossRefGoogle ScholarPubMed
Moran, N. & Baumann, P. (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends in Ecology & Evolution 9, 1520.CrossRefGoogle ScholarPubMed
Moran, N.A., McCutcheon, J.P. & Nakabachi, A. (2008) Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42, 165190.CrossRefGoogle ScholarPubMed
Nguyen, R. & Hamon, A.B. (1990) Ash Whitefly, Siphoninus phillyreae (Haliday) (Insecta: Aleyrodidae: Aleyrodinae). Entomology Circular No. 337. Tallahassee, FL, USA, Florida Department of Agriculture and Consumer Services, Division of Plant Industry. Available online at http://www.doacs.state.fl.us/pi/enpp/ento/entcirc/ent337.pdf (accessed 18 May 2012).Google Scholar
Nirgianaki, A., Banks, G.K., Frohlich, D.R., Veneti, Z., Braig, H.R., Miller, T.A., Bedford, I.D., Markham, P.G., Savakis, C. & Bourtzis, K. (2003) Wolbachia infections of the whitefly Bemisia tabaci. Current Microbiology 47, 93101.Google ScholarPubMed
Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Science of the United States of America 100, 18031807.CrossRefGoogle ScholarPubMed
Perring, T.M. (2001) The Bemisia tabaci species complex. Crop Protection 20, 725737.CrossRefGoogle Scholar
Russell, J.A. & Moran, N.A. (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appled and Environmental Microbiology 71(12), 79877994.CrossRefGoogle Scholar
Secker, A.E., Bedford, I.A., Markham, P.G. & William, M.E.C. (1998) Squash, a reliable field indicator for the presence of B biotype of tobacco whitefly, Bemisia tabaci. pp. 837842 in Brighton Crop Protection Conference-Pests and Diseases Farnham, UK, British Crop Protection Council.Google Scholar
Skaljac, M., Zanic, K., Goreta Ban, S., Kontsedalov, S. & Ghanim, M. (2010) Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiology 10, 142.CrossRefGoogle ScholarPubMed
Szklarzewicz, T. & Moskal, A. (2001) Ultrastructure, distribution, and transmission of endosymbionts in the whitefly Aleurochiton aceris Modeer (Insecta, Hemiptera, Aleyrodinea). Protoplasma 218, 4553.CrossRefGoogle Scholar
Thao, M.L. & Baumann, P. (2004a) Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Applied and Environmental Microbiology 70, 34013406.CrossRefGoogle Scholar
Thao, M.L. & Baumann, P. (2004b) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Current Microbiology 48, 140144.CrossRefGoogle Scholar
Zanic, K., Cenis, J.L., Kacic, S. & Katalinic, M. (2005) Current Status of Bemisia tabaci in coastal Croatia. Phytoparasitica 33, 6064.CrossRefGoogle Scholar
Zchori-Fein, E. & Brown, J.K. (2002) Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America 95, 711718.CrossRefGoogle Scholar
Zchori-Fein, E. & Perlman, J.P. (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Molecular Ecology 13, 20092016.CrossRefGoogle ScholarPubMed
Weeks, A.R. & Breeuwer, J.A.J. (2003) A new bacterium from the Cytophaga-Flavobacterium-Bacteroides phylum that causes sex ratio distortion. pp. 165176in Bourtzis, K. & Miller, T. (Eds) Insect Symbiosis II. Boca Raton, FL, USA, CRC Press.CrossRefGoogle Scholar
Werren, J.H., Skinner, S.W. & Huger, A.M. (1986) Male-killing bacteria in a parasitic wasp. Science 231, 990992.CrossRefGoogle Scholar
38
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *