Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T03:30:34.139Z Has data issue: false hasContentIssue false

Selective flowers to attract and enhance Telenomus laeviceps (Hymenoptera: Scelionidae): a released biocontrol agent of Mamestra brassicae (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  10 May 2018

G. Barloggio*
Affiliation:
Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postfach, Frick 5070, Switzerland Department of Environmental Sciences, Biogeography, University of Basel, St. Johanns-Vorstadt 10, Basel 4056, Switzerland
L. Tamm
Affiliation:
Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postfach, Frick 5070, Switzerland
P. Nagel
Affiliation:
Department of Environmental Sciences, Biogeography, University of Basel, St. Johanns-Vorstadt 10, Basel 4056, Switzerland
H. Luka
Affiliation:
Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postfach, Frick 5070, Switzerland Department of Environmental Sciences, Biogeography, University of Basel, St. Johanns-Vorstadt 10, Basel 4056, Switzerland
*
*Author for correspondence Phone: +41 62 865 04 45 Fax: +41 62 865 72 73 E-mail: guendalina.barloggio@gmail.com

Abstract

The importance of the right food source for the survival and reproduction of certain insect species is well documented. In the case of biocontrol agents, this is even more important in order to reach a high predation or parasitation performance. The egg parasitoid Telenomus laeviceps (Förster, 1861) (Hymenoptera: Scelionidae) is a promising candidate for mass release as a biological control agent of the cabbage moth Mamestra brassicae (Linnaeus, 1758) (Lepidoptera: Noctuidae). However, adult T. laeviceps need a sugar-rich food source to increase their parasitation performance and produce a good amount of female offspring. Released biocontrol agents were shown to benefit from conservation biocontrol, which includes the provision of selected flowers as nectar resources for beneficial insects. In Switzerland, Centaurea cyanus L. (Asteraceae), Fagopyrum esculentum Moench (Polygonaceae) and Vicia sativa L. (Fabaceae) are successfully implemented in the field to attract and promote natural enemies of different cabbage pests. In this study, we investigated the potential of these selected flowers to attract and promote T. laeviceps under laboratory conditions. In Y-tube olfactometer experiments, we first tested whether the three nectar providing plant species are attractive to T. laeviceps. Furthermore, we assessed their effects on survival and parasitation performance of adult T. laeviceps. We found that flowers of F. esculentum and C. cyanus were attractive in contrast to V. sativa. Also fecundity and the number of female offspring produced were higher for females kept on F. esculentum and C. cyanus than on V. sativa. In contrast, survival was similar on all treatments. Our findings present a further key step towards the implementation of T. laeviceps as a biocontrol agent.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, T.R. & Gonzalez, D. (1974) Effect of various food substances on longevity and fecundity of Trichogramma. Environmental Entomology 3, 169171.Google Scholar
Babendreier, D., Kuske, S. & Bigler, F. (2003) Overwintering of the egg parasitoid Trichogramma brassicae in Northern Switzerland. Biological Control 48, 261273.Google Scholar
Balmer, O., Pfiffner, L., Schied, J., Willareth, M., Leimgruber, A., Luka, H. & Traugott, M. (2013) Noncrop flowering plants restore top-down herbivore control in agricultural fields. Ecology and Evolution 3, 26342646.Google Scholar
Balmer, O., Géneau, C.E., Belz, E., Weishaupt, B., Förderer, G., Moos, S., Ditner, N., Juric, I. & Luka, H. (2014) Wildflower companion plants increase pest parasitation and yield in cabbage fields: experimental demonstration and call for caution. Biological Control 76, 1927.Google Scholar
Balzan, M.V. & Wäckers, F.L. (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biological Control 67, 2131.Google Scholar
Balzan, M.V., Bocci, G. & Moonen, A.-C. (2016) Utilisation of plant functional diversity in wildflower strips for the delivery of multiple agroecosystem services. Entomologia Experimentalis et Applicata 158, 304319.Google Scholar
Bayle, M.-E. (2012) Spécificité et biologie d'Abrostola asclepiadis (Lep. Noctuidae), agent de biocontrôle potentiel contre les dompte-venins (Apocynaceae, Vincetoxicum spp.). Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage.Google Scholar
Begum, M., Gurr, G.M., Wratten, S.D. & Nicol, H.I. (2004) Flower color affects tri-trophic-level biocontrol interactions. Biological Control 30, 584590.Google Scholar
Begum, M., Gurr, G.M., Wratten, S.D., Hedberg, P.R. & Nicol, H.I. (2006) Using selective food plants to maximize biological control of vineyard pests. Journal of Applied Ecology 43, 547554.Google Scholar
Belz, E., Kölliker, M. & Balmer, O. (2013) Olfactory attractiveness of flowering plants to the parasitoid Microplitis mediator: potential implications for biological control. Biological Control 58, 163173.Google Scholar
Berndt, L.A., Wratten, S.D. & Hassan, P.G. (2002) Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agricultural and Forest Entomology 4, 3945.Google Scholar
Bernstein, C. & Jervis, M. (2008) Food-searching in parasitoids: the dilemma of choosing between ‘immediate’ or future fitness gains. pp. 129171 in Wajnberg, E., Bernstein, C. & van Alphen, J. (Eds) Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications. Oxford, Blackwell Publishing Ltd.Google Scholar
Bianchi, F.J.J.A. & Wäckers, F.L. (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biological Control 46, 400408.Google Scholar
Boivin, G. (2010) Reproduction and immature development of egg parasitoids. pp. 123 in Cônsoli, F.L., Parra, J.R.P. & Zucchi, R.A. (Eds) Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma. New York, NY, Springer Science+Business Media.Google Scholar
Díaz, M.F., Ramírez, A. & Poveda, K. (2012) Efficiency of different egg parasitoids and increased floral diversity for the biological control of noctuid pests. Biological Control 60, 182191.Google Scholar
Ditner, N., Balmer, O., Beck, J., Blick, T., Nagel, P. & Luka, H. (2013) Effects of experimentally planting non-crop flowers into cabbage fields on the abundance and diversity of predators. Biodiversity and Conservation 22, 10491061.Google Scholar
Ferracini, C., Boivin, G. & Alma, A. (2006) Costs and benefits of host feeding in the parasitoid wasp Trichogramma turkestanica. Entomologia Experimentalis et Applicata 121, 229234.Google Scholar
Gardener, M.C. & Gillman, M.P. (2002) The taste of nectar – a neglected area of pollination ecology. Oikos 98, 552557.Google Scholar
Géneau, C.E., Wäckers, F.L., Luka, H., Daniel, C. & Balmer, O. (2012) Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic and Applied Ecology 13, 8593.Google Scholar
Géneau, C.E., Wäckers, F.L., Luka, H. & Balmer, O. (2013) Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biological Control 66, 1620.Google Scholar
Hajirajabi, N., Fazel, M.M., Harvey, J.A., Arbab, A. & Asgari, S. (2016) Dietary sugars and proline influence biological parameters of adult Trissolcus grandis, an egg parasitoid of Sunn pest, Eurygaster integriceps. Biological Control 96, 2127.Google Scholar
Hegazi, E.M., Khafagi, W.E. & Hassan, S.A. (2000) Studies on three species of Trichogramma. I. Foraging behaviour for food or hosts. Journal of Applied Entomology 124, 145149.Google Scholar
Irvin, N.A. & Hoddle, M.S. (2015) The effect of buckwheat flowers and cahaba vetch extrafloral nectaries on fitness of the vine mealybug parasitoid Anagyrus pseudococci (Hymenotpera: Encyrtidae). Florida Entomologist 98, 237242.Google Scholar
Jervis, M. (1998) Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biological Journal of the Linnean Society 63, 461493.Google Scholar
Jervis, M.A. & Heimpel, G.E. (2007) Phytophagy. pp. 525550 in Jervis, M.A. (Ed.) Insects as Natural Enemies: A Practical Perspective. Berlin, Germany, Springer.Google Scholar
Jervis, M.A., Copland, M.J.W. & Harvey, J.A. (2007) The life-cycle. pp. 73165 in Jervis, M.A. (Ed.) Insects as Natural Enemies: A Practical Perspective. Berlin, Germany, Springer.Google Scholar
Jervis, M.A., Ellers, J. & Harvey, J.A. (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology 53, 361385.Google Scholar
Jervis, M.A., Heimpel, G.E., Ferns, P.N., Harvey, J.A. & Kidd, N.A.C. (2001) Life-history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’. Journal of Animal Ecology 70, 442458.Google Scholar
Klemola, N., Heisswolf, A., Ammunét, T., Ruohomäki, K. & Klemola, T. (2009) Reversed impacts by specialist parasitoids and generalist predators may explain a phase leg in moth cycles: a novel hypothesis and preliminary field tests. Annales Zoologici Fennici 46, 380393.Google Scholar
Kuske, S., Widmer, F., Edwards, P.J., Turlings, T.C.J., Babendreier, D. & Bigler, F. (2003) Dispersal and persistence of mass released Trichogramma brassicae (Hymenoptera: Trichogrammatidae) in non-target habitats. Biological Control 27, 181193.Google Scholar
Leatemia, J.A., Laing, J.E. & Corrigan, J.E. (1995) Effects of adult nutrition on longevity, fecundity, and offspring sex ratio of Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). The Canadian Entomologist 127, 245254.Google Scholar
McDougall, S.J. & Mills, N.J. (1997) The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomologia Experimentalis et Applicata 83, 195203.Google Scholar
Mevi-Schütz, J. & Erhardt, A. (2005) Amino acids in nectar enhance butterfly fecundity: a long-awaited link. The American Naturalist 165, 411419.Google Scholar
Mexia, A., Figueiredo, E. & Godinho, M. (2004) Natural control against pests on vegetables in Portugal: important species and their role. IOBC/wprs Bulletin-Pesticides and Beneficial Organisms 27, 18.Google Scholar
Mills, N., Pickel, C., Mansfield, S., McDougall, S., Buchner, R., Caprile, J., Edstrom, J., Elkins, R., Hasey, J., Kelley, K., Krueger, B., Olson, B. & Stocker, R. (2000) Mass releases of Trichogramma wasps can reduce damage from codling moth. California Agriculture 54, 2225.Google Scholar
Parra, J.R.P. (2010) Mass rearing of eggs parasitoids for biological control programs. pp. 267292 in Cônsoli, F.L., Parra, J.R.P. & Zucchi, R.A. (Eds) Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma. New York, NY, Springer Science+Business Media.Google Scholar
Patt, J.M., Hamilton, G.C. & Lashomb, J.H. (1997) Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomologia Experimentalis et Applicata 83, 2130.Google Scholar
Petrov, S. (2012) Entomophags of the Scelionidae family (Hymenoptera, Platigastroidea), registered from natural biocenoses as well as from agrocenoses in Bulgaria. Bulgarian Journal of Ecological Science 11, 2429.Google Scholar
Rivero, A. & West, S.A. (2005) The costs and benefits of host feeding in parasitoids. Animal Behaviour 69, 12931301.Google Scholar
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/.Google Scholar
Romeis, J., Babendreier, D., Wäckers, F.L. & Shanower, T.G. (2005) Habitat and plant specificity of Trichogramma egg parasitoids – underlying mechanisms and implications. Basic and Applied Ecology 6, 215236.Google Scholar
Rose, U.S.R., Lewis, J. & Tumlinson, J.H. (2006) Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Functional Ecology 20, 6774.Google Scholar
Stephens, P.A., Boyd, I.L., McNamara, J.M. & Houston, A.I. (2009) Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90, 20572067.Google Scholar
Steppuhn, A. & Wäckers, F.L. (2004) HPLC sugar analysis reveals the nutritional state and the feeding history of parasitoids. Functional Ecology 18, 812819.Google Scholar
Tooker, J.F. & Hanks, L.M. (2000) Flowering plant hosts of adult hymenopteran parasitoids of central Illinois. Annals of the Entomological Society of America 93, 580588.Google Scholar
Vattala, H.D., Wratten, S.D., Phillips, C.B. & Wäckers, F.L. (2006) The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biological Control 39, 179185.Google Scholar
Wäckers, F.L. (2004) Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biological Control 29, 307314.Google Scholar
Wäckers, F.L. & Swaans, C.P.M. (1993) Finding floral nectar and honeydew in Cotesia rubecula: random or directed? Proceedings Experimental and Applied Entomology of the Netherlands 4, 6772.Google Scholar
Wäckers, F.L., Romeis, J. & van Rijn, P. (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annual Review of Entomology 52, 301323.Google Scholar
Wäckers, F.L., Lee, J.C., Heimpel, G.E., Winkler, K. & Wagenaar, R. (2006) Hymenopteran parasitoids synthesize ‘honeydew-specific’ oligosaccharides. Functional Ecology 20, 790798.Google Scholar
Wellinga, S. & Wysoki, M. (1989) Preliminary investigation of food source preferences of the parasitoid Trichogramma platneri Nagarkatti (Hymenoptera, Trichogrammatidae). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 62, 133135.Google Scholar
Witting-Bissinger, B.E., Orr, D.B. & Linker, H.M. (2008) Effects of floral resources on fitness of the parasitoids Trichogramma exiguum (Hymenoptera: Trichogrammatidae) and Cotesia congregata (Hymenoptera: Braconidae). Biological Control 47, 180186.Google Scholar