Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-27T10:15:10.103Z Has data issue: false hasContentIssue false

DNA barcoding of large oak-living cerambycids: diagnostic tool, phylogenetic insights and natural hybridization between Cerambyx cerdo and Cerambyx welensii (Coleoptera: Cerambycidae)

Published online by Cambridge University Press:  05 December 2018

L.M. Torres-Vila*
Affiliation:
Servicio de Sanidad Vegetal, Consejería de Medio Ambiente y Rural PAyT, Junta de Extremadura, Avda. Luis Ramallo s/n, 06800 Mérida, Badajoz, Spain
R. Bonal
Affiliation:
Forest Research Group, INDEHESA, Escuela de Ingeniería Forestal, Universidad de Extremadura, Avda. Virgen del Puerto 2, 10600 Plasencia, Cáceres, Spain
*
*Author for correspondence Phone: +34 924 00 25 30 E-mail: luismiguel.torres@juntaex.es; luismiguel.torresvila@gmail.com

Abstract

Three large saproxylic cerambycids with different pest/legal status co-occur in the Iberian oak woodlands, Cerambyx welensii (Cw), Cerambyx cerdo (Cc) and Prinobius myardi (Pm): Cw is an emerging pest, Cc is a protected but sometimes harmful species and Pm is a secondary/minor pest. A precise taxonomic diagnosis is necessary for research, management or protection purposes, but may be problematic mainly because Cw and Cc larvae are morphologically indistinguishable. To resolve this constraint, we genotyped adults, larvae and eggs collected over a wide geographical range using the mitochondrial barcoding of the cytochrome c oxidase subunit I (COI). A Neighbour-Joining tree phylogram revealed three distinct clusters corresponding to Cw, Cc and Pm. We further first sequenced for Cw and Cc two mitochondrial (12S rRNA and 16S rRNA) and one nuclear (28S rRNA) gene fragments. For the first two genes, interspecific divergence was lower than in COI, and for the 28S (lower mutation rate), the two species shared identical haplotypes. Two approaches for species delimitation (General Mixed Yule Coalescent (GMYC), Barcode Index Number (BIN)) confirmed the species distinctiveness of Cc and Cw. The Bayesian COI gene tree showed a remarkable genetic divergence between Cc populations from Iberia and the rest of Europe. Such divergence has relevant taxonomic connotations and stresses the importance of a wide geographical scale sampling for accurate DNA barcoding species identification. Incongruities between morphology/lineage and COI barcodes in some individuals revealed natural hybridization between Cw and Cc. Natural hybridization is important from a phylogenetic/evolutionary perspective in these cerambycids, but the prevalence of (and the behavioural/ecological factors involved in) interspecific cross-breeding remain to be investigated.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ács, Z., Melika, G., Pénzes, Z., Pujade-Villar, J. & Stone, G.N. (2007) The phylogenetic relationships between Dryocosmus, Chilaspis and allied genera of oak gallwasps (Hymenoptera, Cynipidae: Cynipini). Systematic Entomology 32, 7080.Google Scholar
Ahrens, D., Monaghan, M.T. & Vogler, A.P. (2007) DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution 44, 436449.Google Scholar
Aljanabi, S.M. & Martínez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 46924693.Google Scholar
Allison, J.D., Borden, J.H. & Seybold, S.J. (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14, 123150.Google Scholar
Arthofer, W., Avtzis, D.N., Riegler, M. & Stauffer, C. (2010) Mitochondrial phylogenies in the light of pseudogenes and Wolbachia: re-assessment of a bark beetle dataset. ZooKeys 56(Special issue), 269280.Google Scholar
Barbour, J.D., Millar, J.G., Rodstein, J., Ray, A.M., Alston, D.G., Rejzek, M., Dutcher, J.D. & Hanks, L.M. (2011) Synthetic 3,5-dimethyldodecanoic acid serves as a general attractant for multiple species of Prionus (coleoptera: Cerambycidae). Annals of the Entomological Society of America 104, 588593.Google Scholar
Bense, U. (1995) Longhorn Beetles: Illustrated Key to the Cerambycidae and Vesperidae of Europe. Weikersheim, Germany, Margraf Verlag.Google Scholar
Bergsten, J., Bilton, D.T., Fujisawa, T., Elliott, M., Monaghan, M.T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G.N., Ribera, I., Nilsson, A.N., Barraclough, T.G. & Vogler, A.P. (2012) The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61, 851869.Google Scholar
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. & Das, I. (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22, 148155.Google Scholar
Bonal, R., Espelta, J.M. & Vogler, A.P. (2011) Complex selection on life-history traits and the maintenance of variation in exaggerated rostrum length in acorn weevils. Oecologia 167, 10531061.Google Scholar
Bugalho, M.N., Caldeira, M.C., Pereira, J.S., Aronson, J. & Pausas, J.G. (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment 9, 278286.Google Scholar
Buse, J., Ranius, T. & Assmann, T. (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conservation Biology 22, 329337.Google Scholar
Carrasco, A. (Ed.) (2009) Procesos de Decaimiento Forestal (la Seca): Situación del Conocimiento. Córdoba, Spain, Consejería de Medio Ambiente, Junta de Andalucía.Google Scholar
CE [Council of Europe] (1979) The Bern Convention (19 September 1979) on the Conservation of European Wildlife and Natural Habitats, Document 104. Strasbourg, France, Council of Europe.Google Scholar
CEC [Council of the European Communities] (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora [Habitats Directive]. Official Journal of the European Communities 35, 750.Google Scholar
CNIG-IGN (2016) MDT05: Modelo Digital del Terreno con Paso de Malla 5m (SRG: ETRS89). Madrid, Spain, Centro Nacional de Información Geográfica, Instituto Geográfico Nacional (CNIG-IGN). Available online at http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR (accessed 24 April 2018).Google Scholar
Danilevsky, M.L. (2017) A Check-List of Longicorn Beetles (Coleoptera, Cerambycoidea) of Europe. Available online at https://www.zin.ru/Animalia/Coleoptera/rus/danlists.htm (accessed 24 April 2018).Google Scholar
Dasmahapatra, K.K. & Mallet, J. (2006) DNA barcodes: recent successes and future prospects. Heredity 97, 254255.Google Scholar
Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 19691973.Google Scholar
Duffy, E.A.J. (1953) A Monograph of the Immature Stages of British and Imported Timber Beetles (Cerambycidae). Norwich, UK, Jarrold & Sons Ltd.Google Scholar
Edgard, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Ezard, T., Fujisawa, T. & Barraclough, T.G. (2009) SPLITS: Species’ LImits by Threshold Statistics. R Package version 1.0-18/r45. Available online at http://R-Forge.R-project.org/projects/splits/ (accessed 24 April 2018).Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
Fujisawa, T. & Barraclough, T.G. (2013) Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62, 707724.Google Scholar
González-Peña, C.F., Vives-Noguera, E. & de Sousa-Zuzarte, A.J. (2007) Nuevo Catálogo de los Cerambycidae (Coleoptera) de la Península Ibérica, Islas Baleares e Islas Atlánticas: Canarias, Açores y Madeira, Monografías SEA Vol. 12. Zaragoza, Spain, Sociedad Entomológica Aragonesa.Google Scholar
Gossner, M. & Hausmann, A. (2009) DNA barcoding enables the identification of caterpillars feeding on native and alien oak. Mitteilungen der Münchner Entomologischen Gesellschaft 99, 135140.Google Scholar
Grove, S.J. (2002) Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics 33, 123.Google Scholar
Hanks, L.M. & Millar, J.G. (2013) Field bioassays of cerambycid pheromones reveal widespread parsimony of pheromone structures, enhancement by host plant volatiles, and antagonism by components from heterospecifics. Chemoecology 23, 2144.Google Scholar
Hebert, P.D.N. & Gregory, T.R. (2005) The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852859.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & de Waard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270, 313321.Google Scholar
Hernández, J.M. (1991) Estudio de los caracteres del huevo en diversos Cerambycidae Ibéricos y su interés taxonómico (Coleoptera). Graellsia 47, 4959.Google Scholar
Huemer, P., Mutanen, M., Sefc, K.M. & Hebert, P.D.N. (2014) Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLoS ONE 9, e115774.Google Scholar
IUCN [International Union for Conservation of Nature] (2010) Cerambyx cerdo. The IUCN Red List of Threatened Species 2010: e.T4166A10502932. Cambridge, UK, IUCN. Available online at http://www.iucnredlist.org/details/4166/1 (accessed 24 April 2018).Google Scholar
Kambhampati, S. & Smith, P.T. (1995) PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Molecular Biology 4, 233236.Google Scholar
Karahan, A., Douek, J., Paz, G., Stern, N., Kideys, A.E., Shaish, L., Goren, M. & Rinkevich, B. (2017) Employing DNA barcoding as taxonomy and conservation tools for fish species censuses at the southeastern Mediterranean, a hot-spot area for biological invasion. Journal for Nature Conservation 36, 19.Google Scholar
Kelley, M.B., Wingard, S.W., Szalanski, A.L. & Stephen, F.M. (2006) Molecular diagnostics of Enaphalodes rufulus (Coleoptera: Cerambycidae). Florida Entomologist 89, 251256.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Kumar, S., Strecher, G. & Tamura, K. (2016) MEGA7: molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.Google Scholar
Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 16951701.Google Scholar
Leigh, J.W. & Bryant, D. (2015) PopART: full-feature software for haplotype network construction. Methods in Ecolology and Evolution 6, 11101116.Google Scholar
López-Pantoja, G., Domínguez-Nevado, L. & Sánchez-Osorio, I. (2008) Mark-recapture estimates of the survival and recapture rates of Cerambyx welensii Küster (Coleoptera cerambycidae) in a cork oak dehesa in Huelva (Spain). Central European Journal of Biology 3, 431441.Google Scholar
López-Pantoja, G., Domínguez, L. & Sánchez-Osorio, I. (2011) Analysis of Prinobius myardi Mulsant population dynamics in a Mediterranean cork oak stand. Annales de la Société Entomologique de France (N.S.) 47, 260268.Google Scholar
López-Pantoja, G., Domínguez-Nevado, L. & Sánchez-Osorio, I. (2016) A procedure for calculating the thermal constants associated with the flight period of Cerambyx welensii Küster and Prinobius myardi Mulsant from field observations. Agricultural and Forest Entomology 18, 8290.Google Scholar
Martín, J., Cabezas, J., Buyolo, T. & Patón, D. (2005) The relationship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forests. Forest Ecology and Management 216, 166174.Google Scholar
Martínez-García, Á. (2011) Cópula mixta entre capricornios de las encinas. Quercus 303, 4344.Google Scholar
Micó, E., García-López, A., Sánchez, A., Juárez, M. & Galante, E. (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? Journal of Insect Conservation 19, 141153.Google Scholar
Miller, S.E. (2007) DNA barcoding and the renaissance of taxonomy. Proceedings of the National Academy of Sciences 104, 47754776.Google Scholar
Mitchell, R.F., Millar, J.G. & Hanks, L.M. (2013) Blends of (R)-3- hydroxyhexan-2-one and alkan-2-ones identified as potential pheromones produced by three species of cerambycid beetles. Chemoecology 23, 121127.Google Scholar
Mitchell, R.F., Reagel, P.F., Wong, J.C.H., Meier, L.R., Silva, W.D., Mongold-Diers, J., Millar, J.G. & Hanks, L.M. (2015) Cerambycid beetle species with similar pheromones are segregated by phenology and minor pheromone components. Journal of Chemical Ecology 41, 431440.Google Scholar
Montero, G., San Miguel, A. & Cañellas, I. (1998) Sistemas de silvicultura mediterránea. La dehesa. pp. 519554 in Jiménez-Díaz, R.M. & Lamo de Espinosa, J. (Eds) Agricultura Sostenible. Madrid, Spain, Agrofuturo, Life and Mundi-Prensa.Google Scholar
Morales-Rodríguez, C., Sánchez-González, Á., Conejo-Rodríguez, Y. & Torres-Vila, L.M. (2015) First record of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Clavicipitaceae) infecting Cerambyx welensii (Coleoptera: Cerambycidae) and pathogenicity tests using a new bioassay method. Biocontrol Science and Technology 25, 12131219.Google Scholar
Morcuende, A. & Naveiro, F. (1993) Capturas de cerambícidos con trampa luminosa en una dehesa extremeña durante 1990, 1991 y 1992. Phytoma-España 48, 5356.Google Scholar
Naveiro, F. & Morcuende, A. (1994) Observaciones sobre los cerambícidos de las quercíneas en la provincia de Cáceces. Phytoma–España 60, 4952.Google Scholar
Nicholls, J.A., Challis, R.J., Mutun, S. & Stone, G.N. (2012) Mitochondrial barcodes are diagnostic of shared refugia but not species in hybridizing oak gallwasps. Molecular Ecology 21, 40514062.Google Scholar
Özdikmen, H. & Turgut, S. (2009) On Turkish Cerambyx linnaeus, 1758 with zoogeographical remarks (Coleoptera: Cerambycidae: Cerambycinae). Munis Entomology and Zoology 4, 301319.Google Scholar
Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England) 20, 289290.Google Scholar
Picard, F. (1929) Coléoptères: Cerambycidae. Faune de France 20. Paris, France, P. Lechevalier.Google Scholar
Pons, J., Barraclough, T.G., Gómez-Zurita, J., Cardoso, A., Durán, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595609.Google Scholar
Porter, T.M. & Hajibabaei, M. (2018) Automated high throughput animal CO1 metabarcode classification. Scientific Reports 8, 110.Google Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Ramírez-Hernández, A., Micó, E., Marcos-García, M.A., Brustel, H. & Galante, E. (2014) The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodiversity and Conservation 23, 20692087.Google Scholar
Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: the Barcode of Life Data system (http://www.barcodinglife.org). Molecular Ecology Resources 7, 355364.Google Scholar
Ratnasingham, S. & Hebert, P.D.N. (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8, e66213.Google Scholar
Ratzeburg, J.T.C. (1839) Die Forst-Insecten. Berlin, Germany, N. Buchhandlung.Google Scholar
Raupach, M.J., Astrin, J.J., Hannig, K., Peters, M.K., Stoeckle, M.Y. & Wägele, J.W. (2010) Molecular species identifications of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology 7, 26.Google Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Sama, G. (2002) Atlas of the Cerambycidae of Europe and the Mediterranean Area 1. Zlín, Czech Republic, Kabourek.Google Scholar
Sama, G. (2013) Fauna Europaea: cerambycidae. in Audisio, P. (Ed.) Fauna Europaea: Coleoptera 2. Berlin, Germany, Fauna Europaea, version 2.6. Available online at http://www.fauna-eu.org/ (accessed 27 October 2016).Google Scholar
Sánchez-Osorio, I., Tapias, R., Domínguez, L. & López Pantoja, G. (2009) Variabilidad intraespecífica de la respuesta electroantenográfica en Cerambyx welensii Küster (Coleoptera, Cerambycidae). Influencia de factores anatómicos, fisiológicos y experimentales. Investigación Agraria: Sistemas y Recursos Forestales 18, 140151.Google Scholar
Schmitt, T. (2007) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology 4, 11.Google Scholar
Solano, E., Thomaes, A., Cox, K., Carpaneto, G.M., Cortellessa, S., Baviera, C., Bartolozzi, L., Zilioli, M., Casiraghi, M., Audisio, P. & Antonini, P. (2016) When morphological identification meets genetic data: the case of Lucanus cervus and L. tetraodon (coleoptera, Lucanidae). Journal of Zoological Systematics and Evolutionary Research 54, 197205.Google Scholar
Speight, M.C.D. (1989) Saproxylic Invertebrates and their Conservation. Nature and Environment Series 46. Strasbourg, France, Council of Europe.Google Scholar
Starzyk, J.R. & Strojny, W. (1985) The morphological variability of adults of the great capricorn beetle, Cerambyx cerdo L. (Coleoptera, Cerambycidae). Polish Journal of Entomology 55, 491504.Google Scholar
Švácha, P. & Danilevsky, M.L. (1987) Cerambycoid larvae of Europe and Soviet Union (Coleoptera, Cerambycoidea) Part I. Acta Universitatis Carolinae, Biologica 30(1986), 1176.Google Scholar
Švácha, P. & Danilevsky, M.L. (1988) Cerambycoid larvae of Europe and Soviet Union (Coleoptera, Cerambycoidea) Part II. Acta Universitatis Carolinae, Biologica 31(1987), 121284.Google Scholar
Sweeney, J.D., Silk, P.J., Gutowski, J.M., Wu, J., Lemay, M.A., Mayo, P.D. & Magee, D.I. (2010) Effect of chirality, release rate, and host volatiles on response of Tetropium fuscum (F.), Tetropium cinnamopterum Kirby, and Tetropium castaneum (L.) to the aggregation pheromone, fuscumol. Journal of Chemical Ecology 36, 13091321.Google Scholar
Talavera, G., Dinca, V. & Vila, R. (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecolology and Evolution 4, 11011110.Google Scholar
Tang, C.Q., Humphreys, A., Fontaneto, D. & Barraclough, T.G. (2014) Effects of phylogenetic reconstruction method on the robustness of species delimitation using single locus data. Methods in Ecolology and Evolution 5, 10861094.Google Scholar
Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619633.Google Scholar
Torres-Vila, L.M. (2017) Reproductive biology of the great capricorn beetle, Cerambyx cerdo (Coleoptera: Cerambycidae): a protected but occasionally harmful species. Bulletin of Entomological Research 107, 799811.Google Scholar
Torres-Vila, L.M., Sánchez-González, Á., Ponce-Escudero, F., Martín-Vertedor, D. & Ferrero-García, J.J. (2012) Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. European Journal of Forest Research 131, 11031116.Google Scholar
Torres-Vila, L.M., Sánchez-González, Á., Merino-Martínez, J., Ponce-Escudero, F., Conejo-Rodríguez, Y., Martín-Vertedor, D. & Ferrero-García, J.J. (2013) Mark-recapture of Cerambyx welensii in dehesa woodlands: dispersal behaviour, population density, and mass trapping efficiency with low trap densities. Entomologia Experimentalis et Applicata 149, 273281.Google Scholar
Torres-Vila, L.M., Mendiola-Díaz, F.J., Conejo-Rodríguez, Y. & Sánchez-González, Á. (2016) Reproductive traits and number of matings in males and females of Cerambyx welensii (Coleoptera: Cerambycidae) an emergent pest of oaks. Bulletin of Entomological Research 106, 292303.Google Scholar
Torres-Vila, L.M., Mendiola-Díaz, F.J. & Sánchez-González, Á. (2017 a) Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark–recapture comparative study. Ecological Entomology 42, 1832.Google Scholar
Torres-Vila, L.M., Zugasti-Martínez, C., Mendiola-Díaz, F.J., De-Juan-Murillo, J.M., Sánchez-González, Á., Conejo-Rodríguez, Y., Ponce-Escudero, F. & Fernandez-Moreno, F. (2017 b) Larval assemblages of large saproxylic cerambycids in Iberian oak forests: wood quality and host preference shape resource partitioning. Population Ecology 59, 315328.Google Scholar
Torres-Vila, L.M., Mendiola-Díaz, F.J. & Sánchez-González, Á. (2018) Adult size and sex ratio variation of Cerambyx welensii (Coleoptera: Cerambycidae) in Mediterranean oak (Fagaceae) woodlands. The Canadian Entomologist 150, 334346.Google Scholar
van Velzen, R., Weitschek, E., Felici, G. & Bakker, F.T. (2012) DNA barcoding of recently diverged species: relative performance of matching methods. PLoS ONE 7, e30490.Google Scholar
Verdugo, A. (2004) Los Cerambícidos (Coleoptera, Cerambycidae) de Andalucía. Córdoba, Spain, Sociedad Andaluza de Entomología.Google Scholar
Villesen, P. (2007) FaBox: an Online Fasta Sequence Toolbox. Available online at http://www.birc.au.dk/software/fabox (accessed 24 April 2018).Google Scholar
Villiers, A. (1946) Coléoptères Cérambycides de l'Afrique du Nord. Faune de l'Empire Français 5. Paris, France, ORSC.Google Scholar
Villiers, A. (1978) Faune des Coléoptères de France 1. Cerambycidae. Encyclopédie Entomologique 42. Paris, France, Lechevalier.Google Scholar
Vitali, F. (2001) Description des œufs des espèces françaises du genre Cerambyx (première contribution à l’étude des œufs des longicornes) (Coleoptera, Cerambycidae, Cerambycinae). Les Cahiers Magellanes 4, 114.Google Scholar
Vives, E. (2000) Coleoptera Cerambycidae. Fauna Ibérica Vol. 12. Madrid, Spain, Museo Nacional de Ciencias Naturales (CSIC).Google Scholar
Whiting, M.F., Carpenter, J.C., Wheeler, Q.D. & Wheeler, W.C. (1997) The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 168.Google Scholar
Xambeu, C. (1895) Moeurs et métamorphoses d'insectes (Cerambyx velutinus, Brullé) [Tirage à part, pagination spéciale]. L'Échange Revue Linnéenne 11, 5961.Google Scholar
Supplementary material: File

Torres-Vila and Bonal supplementary material

Table S1

Download Torres-Vila and Bonal supplementary material(File)
File 262.7 KB