Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T03:41:12.332Z Has data issue: false hasContentIssue false

DNA markers for identifying biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) and studying population dynamics

Published online by Cambridge University Press:  09 March 2007

V. Khasdan
Affiliation:
Department of Entomology, Agricultural Research Organization, Gilat Research Center, M.P. Negev, 85280, Israel
I. Levin
Affiliation:
The Volcani Center, Bet Dagan, 50250, Israel
A. Rosner
Affiliation:
The Volcani Center, Bet Dagan, 50250, Israel
S. Morin
Affiliation:
Department of Entomology, Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, 76100, Israel
S. Kontsedalov
Affiliation:
The Volcani Center, Bet Dagan, 50250, Israel
L. Maslenin
Affiliation:
The Volcani Center, Bet Dagan, 50250, Israel
A.R. Horowitz*
Affiliation:
Department of Entomology, Agricultural Research Organization, Gilat Research Center, M.P. Negev, 85280, Israel
*
*Fax: ++ 972-8-9926 485 E-mail: hrami@volcani.agri.gov.il

Abstract

The two most widespread biotypes of Bemisia tabaci (Gennadius) in southern Europe and the Middle East are referred to as the B and Q-type, which are morphologically indistinguishable. In this study various DNA markers have been developed, applied and compared for studying genetic diversity and distribution of the two biotypes. For developing sequence characterized amplified regions (SCAR) and cleaved amplified polymorphic sequences (CAPS) techniques, single random amplified polymorphic DNA (RAPD) fragments of B and Q biotypes, respectively, were used. The CAPS were investigated on the basis of nuclear sodium channel and the mitochondrial cytochrome oxidase I genes (mtCOI) sequences. In general, complete agreement was found between the different markers used. Analysis of field samples collected in Israel for several years, using these markers, indicated that the percentage of the Q biotype tends to increase in field populations as time progresses. This may be attributed to the resistance of the Q biotype to neonicotinoids and pyriproxyfen and the susceptibility of the B biotype to these insecticides.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agusti, N., de Vicente, M.C. & Gabarra, R. (2000) Developing SCAR markers to study predation on Trialeurodes vaporariorum. Insect Molecular Biology 9, 263268CrossRefGoogle ScholarPubMed
Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. (1980) Construction of a genetic map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32, 314331Google Scholar
Brown, J.K., Frohlich, D.R. & Rossell, R.C. (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex. Annual Review of Entomology 40, 511534CrossRefGoogle Scholar
Byrne, D.N. & Bellows, T.S. (1991) Whitefly biology. Annual Review of Entomology 36, 431457CrossRefGoogle Scholar
Calvert, L.A., Cuervo, M., Arroyave, J.A., Constantino, L.M., Bellotti, A. & Frohlich, D. (2001) Morphological and mitochondrial DNA marker analyses of whiteflies (Homoptera: Aleyrodidae) colonizing cassava and beans in Colombia. Annals of the Entomological Society of America 94, 512519CrossRefGoogle Scholar
Campbell, B.C. (1993) Congruent evolution between whiteflies (Homoptera: Aleyrodidae) and their bacterial endosymbionts based on respective 18S and 16S rDNAs. Current Microbiology 26, 129132CrossRefGoogle ScholarPubMed
Cenis, J.L., Perez, P. & Fereres, A. (1993) Identification of aphid (Homoptera: Aphididae) species and clones by random amplified polymorphic DNA. Annals of the Entomological Society of America 86, 545550CrossRefGoogle Scholar
Cervera, M.T., Cabezas, J.A., Simón, B., Martínez-Zapater, J.M., Beitia, F. & Cenis, J.L. (2000) Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research 90, 391396CrossRefGoogle ScholarPubMed
De Barro, P.J. & Driver, F. (1997) Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Australian Journal of Entomology 36, 149152CrossRefGoogle Scholar
De Barro, P.J., Driver, F., Trueman, J.W.H. & Curran, J. (1999) Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS 1. Molecular Phylogenetics and Evolution 16, 2936CrossRefGoogle Scholar
De Barro, P.J., Scott, K.D., Graham, G.C., Lange, C.L. & Curran, J. (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes 3, 4043CrossRefGoogle Scholar
Elbert, A. & Nauen, R. (2000) Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Management Science 56, 60643.0.CO;2-K>CrossRefGoogle Scholar
Frohlich, D.R., Torres-Jerez, I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology 8, 16831691CrossRefGoogle ScholarPubMed
Gawel, N.J. & Barlett, A.C. (1993) Characterization of differences between whiteflies using RAPD–PCR. Insect Molecular Biology 2, 3338CrossRefGoogle ScholarPubMed
Guirao, P., Beitia, F. & Cenis, J.L. (1997) Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 87, 587593CrossRefGoogle Scholar
Horowitz, A.R., Denholm, I., Gorman, K., Cenis, J.L., Kontsedalov, S. & Ishaaya, I. (2003a) Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica 31, 9498CrossRefGoogle Scholar
Horowitz, A.R., Gorman, K., Ross, G. & Denholm, I. (2003b) Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Archives of Insect Biochemistry and Physiology 54, 177186CrossRefGoogle ScholarPubMed
Horowitz, A.R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58, 216225CrossRefGoogle ScholarPubMed
Jones, D.R. (2003) Plant viruses transmitted by whiteflies. European Journal of Plant Pathology 109, 195219CrossRefGoogle Scholar
Khasdan, V., Levin, I., Rosner, A., Kontsedalov, S., Morin, S. & Horowitz, A.R. (2004) Development and use of DNA markers to distinguish between B and Q biotypes of Bemisia tabaci in Israel. p. 55 in 2nd European Whitefly Symposium EWSII Abstract Compendium, Cavtat, 5–9 October 2004 Croatia, European Whitefly Studies Network.Google Scholar
Konieczny, A. & Ausubel, F.M. (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers. Plant Journal 4, 403410CrossRefGoogle ScholarPubMed
Li, Y.C., Korol, A.B., Fahima, T., Beiles, A. & Nevo, E. (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 11, 24532465CrossRefGoogle ScholarPubMed
Lima, L.H.C., Campos, L., Moretzsohn, M.C., Návia, D., de Oliveira, M.R.V. (2002) Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genetics and Molecular Biology 25, 217223CrossRefGoogle Scholar
Morin, S., Williamson, M.S., Goodson, S.J., Brown, J.K., Tabashnik, B.E. & Dennehy, T.J. (2002) Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology 32, 17811791CrossRefGoogle ScholarPubMed
Nauen, R., Stumpf, N. & Elbert, A. (2002) Toxicological and mechanistic studies on neonicotinoids cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 58, 868875CrossRefGoogle ScholarPubMed
Ohmori, T., Murata, M. & Motoyoshi, F. (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theoretical and Applied Genetics 92, 151156CrossRefGoogle Scholar
Pascual, S. & Callejas, C. (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin of Entomological Research 94, 369375CrossRefGoogle ScholarPubMed
Paran, I. & Michelmore, R.W. (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics 85, 985986CrossRefGoogle ScholarPubMed
Perring, T.M., Cooper, A.D., Rodriguez, R.J., Farrar, C.A. & Bellows, T.S.J. (1993) Identification of a whitefly species by genomic and behavioral studies. Science 259, 7477CrossRefGoogle ScholarPubMed
Rauch, N. & Nauen, R. (2003) Identification of biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Archives of Insect Biochemistry and Physiology 54, 165176CrossRefGoogle ScholarPubMed
Rosell, R.C., Bedford, I.D., Frohlich, D.R., Brown, J.K. & Markham, P.G. (1997) Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 90, 575589CrossRefGoogle Scholar
Sambrook, J. & Russell, D.W. (2001) Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press.Google Scholar
Tsagkarakou, A. & Roditakis, N. (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci (Hemiptera: Aleyrodidae). Molecular Ecology Notes 3, 196198CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., Reijians, M., Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. & Zabeau, M. (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414CrossRefGoogle ScholarPubMed
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535CrossRefGoogle ScholarPubMed