Skip to main content Accessibility help

Does phloem-based resistance to aphid feeding affect host-plant acceptance for reproduction? Parturition of the pea aphid, Acyrthosiphon pisum, on two near-isogenic lines of Medicago truncatula

  • K. Jung Nam (a1), G. Powell (a1) and J. Hardie (a1)

Probing behaviour (prior to parturition) and parturition of two clones (PS01 and N116) of the pea aphid, Acyrthosiphon pisum on two genotypes (near-isogenic lines (NILs)) (Q174_5.13 and Q174_9.10) of Medicago truncatula were investigated using electrical penetration graph (EPG) coupled with simultaneous visual monitoring for parturition. Line Q174_5.13 has been reported to show a phloem-based resistance to feeding in the clone PS01 but to be susceptible to the clone N116, whereas Q174_9.10 has shown to be susceptible to both aphid clones. The time taken to first parturition by clone PS01 was similar on Q174_5.13 and Q174_9.10. Prior to parturition, no aphids on Q174_5.13 contacted phloem, but 5% of the aphids on Q174_9.10 showed phloem salivation (recognized by EPG pattern E1). No phloem contact was observed with aphid clone N116 on either NILs of Medicago before first parturition occurred, and the time taken to first larviposition was similar on Q174_5.13 and Q174_9.10. The results indicate that the initiation of parturition of the clone PS01 and N116 on both NILs does not require the phloem contact and seems unchanged by a phloem-based resistance mechanism to feeding on Medicago. This finding suggests that host recognition and decisions about parturition occur before phloem contact or ingestion, and act independently on R-gene-mediated resistance.

Corresponding author
*Author for correspondence Phone: +44 207594 22242 E-mail:
Hide All
Bournoville, R., Simon, J.C., Badenhausser, I., Girousse, C., Guilloux, T. & André, S. (2000) Clones of pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) distinguished using genetic markers, differ in their damaging effect on a resistant alfalfa cultivar. Bulletin of Entomological Research 90, 3339.
Caillaud, C.M. & Via, S. (2000) Specialised feeding behaviour influences both ecological specialisation and assortative mating in sympatric host races of pea aphids. American Naturalist 156, 606621.
Caillaud, C.M., Du Pietro, J.P., Chaubet, B. & Pierre, J.S. (1995) Application of discriminant analysis to electrical penetration graphs of the aphid Sitobion avenae feeding on resistant and susceptible wheat. Journal of Applied Entomology 119, 103106.
Cartier, J.J. & Painter, R.H. (1956) Differential reactions of two biotypes of the corn leaf aphid to resistant and susceptible varieties, hybrids, and selections of sorghums. Journal of Economical Entomology 46, 498508.
Chew, F.S. & Renwick, J.A.A. (1995) Chemical ecology of host-plant choice in Pieris butterflies. pp. 214238in Carde, R.T. & Bell, W.J. (Eds) Chemical Ecology of Insects. New York, USA, Chapman & Hall.
Del Campo, M.L., Via, S. & Caillaud, M.C. (2003) Recognition of host-specific chemical stimulants in two sympatric host races of the pea aphid Acyrthosiphon pisum. Ecological Entomology 28, 405412.
Ferrari, J., Via, S. & Godfray, H.C.J. (2008) Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution 62, 25082524.
Fraenkel, G. (1958) The raison d'etre of secondary plant substances. Science 129, 14661470.
Gao, L.L., Klingler, J.P., Anderson, J.P., Edwards, O.R. & Singh, K.B. (2008) Characterization of pea aphid resistance to Medicago truncatula. Plant Physiology 146, 9961009.
Goffreda, J.C., Mutschler, M.A., Ave, D.A., Tingey, W.A. & Steffens, J.C. (1989) Aphid deterrence by glucose esters in glandular trichome exudate of the wild tomato, Lycopersicon pennellii. Journal of Chemical Ecology 29, 261274.
Goggin, F.L. (2007) Plant-aphid interactions: molecular and ecological perspectives. Current Opinion in Plant Biology 10, 399408.
Isaak, F.A., Sorensen, E.P. & Painter, R.H. (1965) Stability of resistance to pea aphid and spotted alfalfa aphid in several alfalfa clones under various temperature regimes. Journal of Economic Entomology 58, 140143.
Kaloshian, I., Kinsey, M.G., Williamson, V.M. & Ullman, D.E. (2000) Mi-mediated resistance against the potato aphid Macrosiphum euphorbiae (Hemiptera: Aphididae) limits sieve element ingestion. Environmental Entomology 29, 690695.
Klingler, J., Powell, G., Thompson, G.A. & Isaacs, R. (1998) Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomologia Experimentalis et Applicata 86, 7988.
Klingler, J., Creasy, R., Gao, L., Nair, R.M., Calix, A.S., Jacob, H.S., Edwards, O.R. & Singh, K.B. (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiology 137, 14451455.
Lapointe, S.L. & Tingey, W.M. (1986) Glandular trichomes of Solanum neocardensasii confer resistance to green peach aphid (Homoptera, Aphididae). Journal of Economical Entomology 79, 12641268.
Moran, P.J. & Thompson, G.A. (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology 125, 10741085.
Moran, P.J., Cheng, Y., Cassell, J.L. & Thompson, G.A. (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of Insect Biochemistry and Physiology 51, 182203.
Pegadaraju, V., Louis, J., Singh, V., Reese, J.C., Bautor, J., Feys, B.J., Cook, G., Parker, J.E. & Shah, J. (2007) Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner enhanced disease susceptibility. Plant Journal 52, 332341.
Powell, G. & Hardie, J. (2001) A potent, morph-specific parturition stimulant in the overwintering host plant of the black bean aphid, Aphis fabae. Physiological Entomology 26, 194201.
Powell, G., Tosh, C.R. & Hardie, J. (2006) Host plant selection by aphids: behavioural, evolutionary, and applied perspectives. Annual Review of Entomology 51, 309330.
Reinink, K., Dieleman, F.L., Jansen, J., Montenarie, A.M. (1989) Interactions between plant and aphid genotypes in resistance of lettuce to Myzus persicae and Macrosiphum euphorbiae. Euphytica 43, 215222.
Rossi, M., Goggin, F.L., Milligan, S.B., Kaloshian, I., Ullman, D.E. & Williamson, V.M. (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences of the United States of America 95, 97509754.
Schoonhoven, L.M., Van Loon, J.J.A. & Dicke, M. (2005) pp. 135207in Insect-Plant Biology. Oxford, UK, Oxford University Press.
Stewart, S.A. (2010) Exploring effective, clone-specific resistance against the pea aphid (Acyrthosiphon pisum) in Medicago truncatula. PhD Thesis, Imperial College London.
Stewart, S.A., Hodge, S., Ismail, N., Mansfield, J.W., Feys, B.J., Prosperi, J.M., Huguet, T., Ben, C., Gentzbittel, L.M. & Powell, G. (2009) The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Molecular Plant-Microbe Interactions 22, 16451655.
Tjallingii, W.F. (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany 57, 739745.
Tjallingii, W.F. (1988) Electrical recording of stylet penetration activities. pp. 95108in Minks, A. & Harrewijn, P. (Eds.), Aphids, Their Biology, Natural Enemies and Control. Elsevier. Vol. 2B. Amsterdam, The Netherlands.
Tosh, C.R., Powell, G. & Hardie, J. (2002) Maternal reproductive decisions are independent of feeding in the black bean aphid, Aphis fabae. Journal of Insect Physiology 48, 619629.
Tosh, C.R., Powell, G., Holmes, N.D. & Hardie, J. (2003) Reproductive response of generalist and specialist aphid morphs with the same genotype to plant secondary compounds and amino acids. Journal of Insect Physiology 49, 11731182.
Van Helden, M. & Tjallingii, W.F. (1993) Tissue localization of lettuce resistance to the aphid, Nusonoria ribisnigri, using electrical penetration graphs. Entomologia Experimentalis et Applicata 68, 269278.
Will, T., Tjallingii, W.F., Thönnessen, A. & van Bel, A.J.E. (2007) Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the United States of America 104, 1053610541.
Via, S. (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53, 14461457.
Via, S., Bouck, A.C. & Skillman, S. (2000) Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 54, 16261637.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed