Skip to main content

Identification and characterization of ace1-type acetylcholinesterase in insecticide-resistant and -susceptible Propylaea japonica (Thunberg)

  • M.M. Wang (a1), L.Y. Xing (a1), Z.W. Ni (a1) and G. Wu (a1)

Characterization and gene cloning of acetylecholinesterase (AChE) in the insecticide-resistant (R) and -susceptible (S) insects have been reported in the past. However, the studies focused mostly on herbivorous pests, rather than predacious species, such as ladybird beetles. Using R and S Propylaea japonica (thunberg), a full-length cDNA sequence (2928 bp) of the ace1-type AChE gene was determined for the first time. The ace1 encoding a protein of 645 amino acids contained typical conserved motifs, such as FGESAG domains, catalytic triad, acyl pocket, oxyanino hole, choline binding site, peripheral anionic site, omega loop and conserved aromatic residues. R P. japonica displayed 50-times greater resistance to chlorpyrifos or mathamidophos with a significantly lower AChE sensitivity to paraoxon, malaoxon, chlorpyrifos or methamidophos than its S counterpart. Five amino acids in the ace1 of R P. japonica differed from those found in S P. japonica. One of them, F358S, located in the acyl-binding pocket, might play a crucial role in the resistance of the insect to organophosphates (OPs). Whereas, K493E and I538V, which were close to some of the conserved aromatic amino acids (i.e., H509, Y511, and W499) in the gorge, and G571R and T576A near C593 that formed the disulfide bonds with C471, might also involve in the change of insecticide resistance in P. japonica. AChE insensitivity and amino acid replacements, particularly F358S, might be the determining factors in the alteration of OPs-resistance in P. japonica.

Corresponding author
*Author for correspondence: Fax: +86 059183789460 Tel: +86 059183769631 E-mail: newugang@163com
Hide All
Al-Doghairi M.A., AL-Rehiayani S., Osman K.A. & Elhag E.A. (2004) Residual effects of some conventional and biorational pesticides on ladybird beetle, Adonia variegata Goeze, Pakistan. Journal of Biological Science 7, 130133.
Aldridge W.N. (1950) Some properties of specific cholinesterase with particular reference to mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E605) and analogues. Biochemical Journal 46, 451460.
Alout H., Berthomieu A., Hadjivassilis A. & Weill M. (2007) A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. Insect Biochemistry and Molecular Biology 37, 4147.
Charpentier A. & Fournier D. (2001) Levels of total acetylecholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology 70, 100107.
Chen G. & Wu G. (2005) Resistance to seven insecticides and analysis of enzymatic characteristics in Lipaphis erysimi (Homoptera: Aphididae) in Fuzhou, China. Journal of Fujian Agriculture and Forestry University, China 34, 204207.
Chen Z., Newcomb R., Forbes E., McKenzie J. & Batterham P. (2001) The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly,Lucilia cuprina . Insect Biochemistry and Molecular Biology 31, 805816.
Croft B.A. & Strikler K. (1983) Natural enemy resistance to pesticides: documentation, characterization, theory and application. pp. 669702 in Georghiou G.P. & Saito T. (Eds) Pest Resistance to Pesticides. New York, Plenum.
Duan J.J., Head G., McKee M.J., Nickson T.N., Martin J.W. & Sayegh F.S. (2002) Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle, Coleomegilla maculata . Entomologia Experimentalis et Applicata 104, 271280.
Essandoh J.; Yawson A.E. & Weetman D. (2013) Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malaria Journal 12, 404.
Fournie D. & Mutéro A. (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comparative Biochemistry and Physiology 108C, 1931.
Gao J.R. & Zhu K.Y. (2002) Increased expression of an acetylecholinesterase gene may confer organophosphate resistance in the greenbug Schizaphis graminum (Homoptera: Aphididae). Pesticide Biochemistry and Physiology 73, 164173.
Harel M., Kryger G., Rosenberry R., Mallender W., Lewis T., Fletcher R., Guss J.M., Silman I. & Sussman J.L. (2000) Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science 9, 10631072.
Huchard E., Martinez M., Alout H., Douzery E.J.P., Lutfalla G., Berthomieu A., Berticat C., Raymond M. & Weill M. (2006) Acetylcholinesterase genes within the Diptera: takeover and loss in true flies. Proceedings of the Royal Society of London Series B 273, 25952604.
James D.G. (2003) Pesticide susceptibility of two coccinellids (Stethorus punctum picipes and Harmonia axyridis) important in biological control of mites and aphids in Washington Hops. Biocontrol Science and Technology 13, 253259.
Javed N., Viner R., Williamson M.S., Field L.M., Devonshire A.L. & Moores G.D. (2003) Characterization of acetylecholinesterase, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood). Inset Molecular Biology 12, 613620.
Jiang J.J., Zhou K., Liang G.W., Zeng L. & Wen S.Y. (2014) A novel point mutation of acetylcholinesterase in a trichlorfon-resistant strain of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). Applied Entomology and Zoology 49, 129137.
Kim Y.H. & Lee S.H. (2013) Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Molecular Biology 43, 4753.
Kumral N.A., Gencer N.S., Susurluk H. & Yalcin C. (2011) A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities in Stethorus gilvifrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina: Tetranychidae). International Journal of Acarology 37, 255268.
Kwon D.H., Clark J.M. & Lee S.H. (2010) Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. Insect Molecular Biology 19, 195204.
Kwon D.H., Min S., Lee S.W., JPark J.H. & Lee S.H. (2012) Monitoring of carbamate and organophosphate resistance levels in Nilaparvata lugens based on bioassay and quantitative sequencing. Journal of Asia-Pacific Entomology 15, 635639.
Lang G.J., Zhu K.Y. & Zhang C.X. (2012) Can acetylcholinesterase serve as a target for developing more selective insecticides? Current Drug Targets 13, 495501.
Lee S.H., Kim Y.H., Kwon D.H., Cha D.J. & Kim J.H. (2015) Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance. Pesticide Biochemistry and Physiology 20, 118124.
Li B.L., Chen W., Liu L., Zhang X.C., Bao Y.Y., Cheng J.A., Zhu Z.R. & Zhang C.X. (2012) Molecular characterization of two acetylcholinesterase genes from the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pesticide Biochemistry and Physiology 102, 198203.
Li P., Chen Q.Z. & Liu T.X. (2015) Effects of a juvenile hormone analog, pyriproxyfen, on Serangium japonicum (Coleoptera: Coccinellidae), a predator of Bemisia tabaci (Hemiptera: Aleyrodidae). Biological Control 86, 713.
Malekmohammadi M., Hejazi M.J., Mossadegh M.S., Galehdari H., Khanjani M. & Goodarzi M.T. (2012) Molecular diagnostic for detecting the acetylcholinesterase mutations in insecticide-resistant populations of Colorado potato beetle, Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology 104, 150156.
Menozzi P., Shi M.A., Lougarre A., Tang Z.H. & Fournier D. (2004) Mutations of acetylecholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutional Biology 4, 4.
Miyata T. & Wu G. (2010) Studies on diamondback moth (Plutella xylostella (L.)) resistance to insecticides: past, present and future. Journal of Pesticide Science 35, 555561.
Mutero A., Pralavorio M., Bride J.M., & Fournier D. (1994) Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. PNAS USA 91, 59225926.
Nabeshima T., Mori A., Kozaki T., Iwata Y., Hidoh O., Harada S., Kasai S., Severson D.W., Kono Y. & Tomita T. (2004) An amino acid substitution attributable to insecticide- insensitivity of acetylecholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus . Biochemical and Biophysical Research Communications 313, 794801.
Obrycki J.J. & Kring T.J. (1998) Predacious coccinellidae in biological control. Annual Review of Entomology 43, 295321.
Ramoutar D., Cowles R.S. & Alm S.R. (2009) Pyrethroid resistance mediated by enzyme detoxification in Listronotus maculicollis (Coleoptera: Curculionidae) from Connecticut. Journal of Economic Entomology 102, 12031208.
Ren X., Han Z. & Wang Y. (2002) Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hübner). Archives of Insect Biochemistry and Physiology 51, 103110.
Revuelta L., Piulachs M.D., Bellés X., Castañera P., Ortego F., Díaz-Ruíz J.R., Hernández-Crespo P. & Tenllado F. (2009) RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides. Insect Biochemistry and Molecular Biology 39, 913919.
Revuelta L., Ortego F., Díaz-Ruíz J.R., Castañera P., Tenllado F. & Hernández-Crespo P. (2011) Contribution of Ldace1 gene to acetylcholinesterase activity in Colorado potato beetle. Insect Biochemistry and Molecular Biology 41, 795803.
Shi M.A., Lougarre A., Alies C., Frémaux I., Tang Z.H., Stojan J. & Fournier D. (2004) Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evolutionary Biology 4, 5.
Sonoda S., Shi X.Y., Song D., Liang P., Gao X.W., Zhang Y., Liu Y., Matsumura M., Sanada-Morimura S., Minakuchi C., Tanaka T. & Miyata T. (2014) Duplication of acetylcholinesterase gene in diamondback moth strains with different sensitivities to acephate. Insect Biochemistry and Molecular Biology 48, 8390.
Tang Q.Y. & Feng M.G. (1997) pp. 188195 in Tang Q.Y. & Feng M.G. (Eds) Practical Statistics and DPS Data Processing System. Beijing, China, China Agricultural Press.
Tang L.D., Wang X.M., Jin F.L., Qiu B.L., Wu J.H. & Ren S.X. (2014) De novo sequencing-based transcriptome and digital gene expression analysis reveals insecticide resistance-relevant genes in Propylaea japonica (Thunberg) (Coleoptea: Coccinellidae). Plos ONE 9, e100946. doi:10.1371/journal.pone.0100946.
Taylor P. & Radic Z. (1994) The Cholinesterases: from genes to proteins. Annual Review of Pharmacology and Toxicology 34, 281320.
Toda S., Komazaki S., Tomita T. & Kono Y. (2004) Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophos- phorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Molecular Biology 13, 549553.
Torres J.B., Rodrigues A.R.S., Barros E.M. & Santos D.S. (2015) Lambda-cyhalothrin resistance in the lady beetle Eriopis connexa (Coleoptera: Coccinellidae) confers tolerance to other pyrethroids. Journal of Economic Entomology 108, 6068.
Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum . Nature 452, 949955.
Vaughan A., Rocheleau T. & Ffrench-Constant R. (1997) Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity. Experimental Parasitology 87, 237244.
Verma A., Wong D.M., Islam R., Tong F. & Ghavami M. (2015) 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae . Bioorganic and Medicinal Chemistry 23, 13211340.
Vontas J.G., Hejazi M.J., Hawkes N.J., Cosmidis N., Loukas M. & Hemingway J. (2002) Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae . Insect Molecular Biology 11, 329336.
Walsh S.B., Dolden T.A., Moores G.D., Kristensen M., Lewis T., Devonshire A.L. & Williamson M.S. (2001) Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochemical Journal 359, 175181.
Wang J.M., Wang B.B., Xie Y., Sun S.S., Gu Z.Y., Ma L., Li F.C., Zhao Y.F., Yang B., Shen W.D. & Li B. (2014) Functional study on the mutations in the silkworm (Bombyx mori) acetylcholinesterase type 1 gene (ace1) and its recombinant proteins. Molecular Biology Reports 41, 429437.
Wu G. & Miyata T. (2005) Susceptibilities to methamidophos and enzymatic characteristics in 18 species of pest insects and their natural enemies in crucifer vegetable crops. Pesticide Biochemistry and Physiology 82, 7993.
Wu G., Kang C.Y., Miyata T. & Xie L.H. (2007) Insecticide toxicity and synergism by enzyme inhibitions in 18 species of pest insects and natural enemies in crucifer vegetable crops. Pest Management Science 63, 500510.
Youn Y.N., Seo M.J., Shin G.J., Jang C. & Yu Y.M. (2003) Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control 28, 164170.
Yu C.H., Fu M.R., Lin R.H., Zhang Y., Liu Y.Q., Jiang H. & Brock T.C.M. (2014) Toxic effects of hexaflumuron on the development of Coccinella septempunctata . Environmental Science and Pollution Research 21, 14181424.
Zhang Y.H., Jiang R.X., Wu H.S., Liu P., Xie J.Q., He Y.Y. & Pang H. (2012) Next-generation sequencing-based transcriptome analysis of Cryptolaemus montrouzieri under insecticide stress reveals resistance-relevant genes in ladybirds. Genomics 100, 3541.
Zhang Y.L., Shuo L.i., Xu L., Guo H.F., Zi J.Y., Wang L.H., He P. & Fang J.C. (2013) Overexpression of carboxylesterase-1 and mutation (F439H) of acetylcholinesterase-1 are associated with chlorpyrifos resistance in Laodelphax striatellus . Pesticide Biochemistry and Physiology 106, 813.
Zhao H., Tang L., Hu M.Y., Geng P. & An GD. (2012) Research progresses on pesticides resistance of predatory mites. Chinese Journal of Biological Control 28, 282288.
Zhu K.Y. & Clark J.M. (1995) Comparisons of kinetic properties of acetylcholinesterase purified from azinphosmethys-susceptible and resistant strains of Colorado potato bettle. Pesticide Biochemistry and Physiology 51, 5767.
Zhu K.Y., Lee S.H. & Clark J.M. (1996) A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistry and Physiology 55, 100108.
Zhuang H.M., Li C.W. & Wu G. (2014) Identification and characterization of ace2-type acetylcholinesterase in insecticide-resistant and -susceptible parasitoid wasp Oomyzus sokolowskii (Hymenoptera: Eulophidae). Molecular Biology Reports 41, 75257534.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Wang supplementary material
Supplementary Figure

 Unknown (432 KB)
432 KB


Full text views

Total number of HTML views: 1
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 101 *
Loading metrics...

* Views captured on Cambridge Core between 27th July 2017 - 23rd November 2017. This data will be updated every 24 hours.