Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T01:26:18.578Z Has data issue: false hasContentIssue false

Potential demographic impact of the insecticide mixture between thiacloprid and deltamethrin on the cotton aphid and two of its natural enemies

Published online by Cambridge University Press:  28 July 2022

Marziyeh Majidpour
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
Nariman Maroofpour*
Affiliation:
Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Mojtaba Ghane-Jahromi
Affiliation:
Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
*
Author for correspondence: Nariman Maroofpour, Email: n.maroofpoor@tabrizu.ac.ir

Abstract

The use of pesticides impairs biological control in the agroecosystems and thus compromises the effectiveness of natural enemies against populations of pest species. The concerns over pesticides should expand beyond mortality and encompass their sublethal effects and their consequences to the target insect species and natural enemies to aid in our understanding of the potential and consequential use of these compounds. The present study aimed to determine the effects of an insecticide mixture on life-history and demographic parameters of the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae) and two of its main parasitoids – Aphidius flaviventris Kurdjumov (Hymenoptera: Aphelinidae) and Aphidius colemani Viereck (Hymenoptera: Braconidae). Based on the obtained results, thiacloprid + deltamethrin in its lethal concentration dose 20% of the pest population (LC20) significantly affected the cotton aphid for two generations, increasing developmental time and demographic parameters. The LC20 manifested changes in many demographic parameters of the parasitoid A. flaviventris. This concentration also increased preadult and female longevity, total pre-ovipositional period, and mean generation time (T) of A. colemani, but no other demographic parameters were affected. Nonetheless, the insecticide mixture did not affect the parasitism rate of A. colemani. Thus, the thiacloprid + deltamethrin mixture significantly impaired the cotton aphid population and its parasitoid A. flaviventris. Therefore, the use of thiacloprid + deltamethrin is not encouraged for controlling the parasitoid A. flaviventris, but it is a relatively safe compound for A. colemani.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, WS (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Abd-Rabou, S, Ghahari, H, Myartseva, SN and Ruíz-Cancino, E (2013) Iranian Aphelinidae (Hymenoptera: Chalcidoidea). Journal of Entomology and Zoology 1, 116140.Google Scholar
Abdulhay, HS and Rathi, MH (2014) Effect of some insecticides on the egg parasitoid, Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae). Al-Nahrain Journal of Science 17, 116123.Google Scholar
Almasi, A, Sabahi, Q and Mardani, A (2016) Demographic studies for evaluating the side effects of insecticides Proteus® and pymetrozine on variegated lady beetle Hippodamia variegata (Goeze.). Journal of Entomology and Zoology 4, 234242.Google Scholar
Amini Jam, N, Kocheili, F, Mossadegh, MS, Rasekh, A and Saber, M (2014) Lethal and sublethal effects of imidacloprid and pirimicarb on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. Journal of Crop Protection 3, 8998.Google Scholar
Aparicio, Y, Gabarra, R and Arnó, J (2020) Interactions among Myzus persicae, predators and parasitoids may hamper biological control in Mediterranean peach orchards. Entomologia Generalis 40, 217228.CrossRefGoogle Scholar
Bastos, CS, de Almeida, RP and Suinaga, FA (2006) Selectivity of pesticides used on cotton (Gossypium hirsutum) to Trichogramma pretiosum reared on two laboratory-reared hosts. Pest Management Science 62, 9198.CrossRefGoogle ScholarPubMed
Biondi, A, Desneux, N, Siscaro, G and Zappalà, L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87, 803812.CrossRefGoogle Scholar
Biondi, A, Zappalà, L, Stark, JD and Desneux, N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8, e76548.CrossRefGoogle ScholarPubMed
Campolo, O, Chiera, E, Malacrinò, A, Laudani, F, Fontana, A, Albanese, GR and Palmeri, V (2014) Acquisition and transmission of selected CTV isolates by Aphis gossypii. Journal of Asia-Pacific Entomology 17, 493498.CrossRefGoogle Scholar
Chi, H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17, 2634.CrossRefGoogle Scholar
Chi, H (2020a) CONSUME-MSChart: a computer program for predation rate study based on age-stage, two-sex life table. http://140120197173/Ecology/.Google Scholar
Chi, H (2020b) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140120197173/Ecology/.Google Scholar
Chi, H and Su, HY (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology 35, 1021.CrossRefGoogle Scholar
Chi, H and Yang, TC (2003) Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology 32, 327333.CrossRefGoogle Scholar
Chi, H, You, M, Atlihan, R, Smith, CL, Kavousi, A, Ozgokce, MS, Guncan, A, Tuan, SJ, Fu, JW, Xu, YY and Zheng, FQ (2020) Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomologia Generalis 40, 102123.CrossRefGoogle Scholar
Cocco, A, da Silva, VCP, Benelli, G, Botton, M, Lucchi, A and Lentini, A (2020) Sustainable management of the vine mealybug in organic vineyards. Journal of Pest Science 94, 153185.CrossRefGoogle Scholar
D’Ávila, VA, Barbosa, WF, Guedes, RNC and Cutler, GC (2018) Effects of spinosad, imidacloprid, and lambda-cyhalothrin on survival, parasitism, and reproduction of the aphid parasitoid Aphidius colemani. Journal of Economic Entomology 111, 10961103.CrossRefGoogle ScholarPubMed
De Armas, FS, Grutzmacher, AD, Nava, DE and Pasini, RA, Rakes, M and de Bastos Pazini, J (2020) Non-target toxicity of nine agrochemicals toward larvae and adults of two generalist predators active in peach orchards. Ecotoxicology 29, 327339.CrossRefGoogle ScholarPubMed
Desneux, N, Wajnberg, E, Fauvergue, X, Privet, S and Kaiser, L (2004) Oviposition behaviour and patch-time allocation in two aphid parasitoids exposed to deltamethrin residues. Entomologia Experimentalis et Applicata 112, 227235.CrossRefGoogle Scholar
Desneux, N, Decourtye, A and Delpuech, JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81106.CrossRefGoogle ScholarPubMed
Ferdenache, M, Bezzar-Bendjazia, R, Marion-Poll, F and Kilani-Morakchi, S (2019) Transgenerational effects from single larval exposure to azadirachtin on life history and behavior traits of Drosophila melanogaster. Scientific Reports 9, 112.CrossRefGoogle ScholarPubMed
Fontes, J, Roja, IS, Tavares, J and Oliveira, L (2018) Lethal and sublethal effects of various pesticides on Trichogramma achaeae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology 111, 12191226.CrossRefGoogle Scholar
Guedes, RNC and Cutler, GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Management Science 70, 690697.CrossRefGoogle ScholarPubMed
Guedes, RNC, Smagghe, G, Stark, JD and Desneux, N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology 61, 4362.CrossRefGoogle ScholarPubMed
Gugliuzzo, A, Biedermann, PH, Carrillo, D, Castrillo, LA, Egonyu, JP, Gallego, D, Haddi, K, Hulcr, J, Jactel, H, Kajimura, H and Kamata, N (2021) Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. Journal of Pest Science 94, 615637.CrossRefGoogle Scholar
Heinz, KM (1998) Dispersal and dispersion of aphids (Homoptera: Aphididae) and selected natural enemies in spatially subdivided greenhouse environments. Environmental Entomology 27, 10291038.CrossRefGoogle Scholar
Herron, GA, Powis, K and Rophail, J (2001) Insecticide resistance in Aphis gossypii Glover (Hemiptera: Aphididae), a serious threat to Australian cotton. Austral Entomology 40, 8591.CrossRefGoogle Scholar
Hullé, M, Chaubet, B, Turpeau, E and Simon, JC (2020) Encyclop'Aphid: a website on aphids and their natural enemies. Entomologia Generalis 31, 97101.CrossRefGoogle Scholar
Japoshvili, G and Abrantes, I (2006) Aphelinus species (Hymenoptera: Aphelinidae) from the Iberian Peninsula, with the description of one new species from Portugal. Journal of Natural History 40, 855862.CrossRefGoogle Scholar
Kerns, D and Stewart, S (2000) Sublethal effects of insecticides on the intrinsic rate of increase of cotton aphid. Entomologia Experimentalis et Applicata 94, 4149.CrossRefGoogle Scholar
Kidd, P, Rummel, D and Thorvilson, H (1996) Effect of cyhalothrin on field populations of the cotton aphid, Aphis gossypii Glover, in the Texas High Plains. Southwestern Entomologist 21, 293301.Google Scholar
Majidpour, M, Maroofpour, N, Ghane-Jahromi, M and Guedes, RNC (2020) Thiacloprid + deltamethrin on the life-table parameters of the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), and the parasitoid, Aphidius flaviventris (Hymenoptera: Aphelinidae). Journal of Economic Entomology 113, 27232731.CrossRefGoogle ScholarPubMed
Mardani, A, Sabahi, Q, Rasekh, A and Almasi, A (2016) Lethal and sublethal effects of three insecticides on the aphid parasitoid, Lysiphlebus fabarum Marshall (Hymenoptera: Aphidiidae). Phytoparasitica 44, 9198.CrossRefGoogle Scholar
Maroofpour, N, Mousavi, M, Hejazi, MJ, Iranipour, S, Hamishehkar, H, Desneux, N, Biondi, A and Haddi, K (2021) Comparative selectivity of nano and commercial formulations of pirimicarb on a target pest, Brevicoryne brassicae, and its predator Chrysoperla carnea. Ecotoxicology 30, 361372.CrossRefGoogle ScholarPubMed
Mead-Briggs, M (1992) A laboratory method for evaluating the side-effects of pesticides on the cereal aphid parasitoid Aphidius rhopalosiphi (DeStefani-Perez). Aspects of Applied Biology 31, 179189.Google Scholar
Miao, J, Du, ZB, Wu, YQ, Gong, ZJ, Jiang, YL, Duan, Y, Li, T and Lei, CL (2014) Sub-lethal effects of four neonicotinoid seed treatments on the demography and feeding behaviour of the wheat aphid Sitobion avenae. Pest Management Science 70, 5559.CrossRefGoogle ScholarPubMed
Momanyi, G, Maranga, R, Sithanantham, S, Agong, S, Matoka, C and Hassan, S (2012) Evaluation of persistence and relative toxicity of some pest control products to adults of two native trichogrammatid species in Kenya. BioControl 57, 591601.CrossRefGoogle Scholar
Müller, C (2018) Impacts of sublethal insecticide exposure on insects-facts and knowledge gaps. Basic and Applied Ecology 30, 14391791.CrossRefGoogle Scholar
Prado, SG, Jandricic, SE and Frank, SD (2015) Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 6, 538575.CrossRefGoogle ScholarPubMed
Rajaee, F, Maroofpour, N, Ghane-Jahromi, M, Sedaratian-Jahromi, A and Guedes, RNC (2022) Transgenerational sublethal effects of spiromesifen on Tetranychus urticae (Acari: Tetranychidae) and on its phytoseiid predator Neoseiulus californicus (Acari: Phytoseiidae). Systematic and Applied Acarology 27, 888904.Google Scholar
Ricupero, M, Desneux, N, Zappalà, L and Biondi, A (2020) Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. Chemosphere 247, 125728.CrossRefGoogle ScholarPubMed
Santoiemma, G, Tonina, L, Marini, L, Duso, C and Mori, N (2020) Integrated management of Drosophila suzukii in sweet cherry orchards. Entomologia Generalis 40, 297305.CrossRefGoogle Scholar
Shi, X, Jiang, L, Wang, H, Qiao, K, Wang, D and Wang, K (2011) Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Management Science 67, 15281533.CrossRefGoogle ScholarPubMed
Souza, JR, Moreira, LB, Lima, LLR, Silva, TG, Braga, PPM and Carvalho, GA (2020) Susceptibility of Chrysoperla externa (Hagen, 1861) (Neuroptera: Crysopidae) to insecticides used in coffee crops. Ecotoxicology 29, 13061314.CrossRefGoogle ScholarPubMed
SPSS (2011) IBM SPSS statistics for Windows, version 20.0 New York: IBM Corp.Google Scholar
Tuan, SJ, Lee, CC and Chi, H (2014) Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science 70, 805813.CrossRefGoogle ScholarPubMed
Ullah, F, Gul, H, Desneux, N, Gao, X and Song, D (2019) Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomologia Generalis 39, 325337.CrossRefGoogle Scholar
Ullah, F, Gul, H, Tariq, K, Desneux, N, Gao, X and Song, D (2020) Thiamethoxam induces transgenerational hormesis effects and alteration of genes expression in Aphis gossypii. Pesticide Biochemistry and Physiology 165, 104557.CrossRefGoogle ScholarPubMed
Wang, KY, Liu, TX, Yu, CH, Jiang, XY and Yi, MQ (2002) Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. Journal of Economic Entomology 95, 407413.CrossRefGoogle ScholarPubMed
Wang, S, Qi, Y, Desneux, N, Shi, X, Biondi, A and Gao, X (2017) Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. Journal of Pest Science 90, 389396.CrossRefGoogle Scholar
Supplementary material: File

Majidpour et al. supplementary material

Table S1

Download Majidpour et al. supplementary material(File)
File 12.8 KB