Skip to main content Accessibility help
×
Home

The Logic of Bunched Implications

  • Peter W. O'Hearn (a1) and David J. Pym (a2)

Abstract

We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic relationship between conjunction and implication; it can be viewed as a merging of intuitionistic logic and multiplicative intuitionistic linear logic. The naturality of BI can be seen categorically: models of propositional BI's proofs are given by bicartesian doubly closed categories, i.e., categories which freely combine the semantics of propositional intuitionistic logic and propositional multiplicative intuitionistic linear logic. The predicate version of BI includes, in addition to standard additive quantifiers, multiplicative (or intensional) quantifiers and which arise from observing restrictions on structural rules on the level of terms as well as propositions. We discuss computational interpretations, based on sharing, at both the propositional and predicate levels.

Copyright

References

Hide All
[1] Abramsky, S., Computational interpretations of linear logic, Theoretical Computer Science, vol. 111 (1993), no. 1–2, pp. 357.
[2] Ambler, S., First order linear logic in symmetric monoidal closed categories, Ph.D. thesis , University of Edinburgh, 1992.
[3] Anderson, A. R. and Belnap, N. D., Entailment: the logic of relevance and necessity, volume I, Princeton University Press, 1975.
[4] Anderson, A. R., Dunn, J. M., and Belnap, N. D., Entailment: the logic of relevance and necessity, vol. II, Princeton University Press, 1992.
[5] Barber, A. and Plotkin, G. D., Dual intuitionistic linear logic, submitted, 10 1997.
[6] Belnap, N. D., Display logic, Journal of Philosophical Logic, vol. 11 (1982), pp. 375414.
[7] Belnap, N. D., Life in the undistributed middle, Substructural logics (Došen, K. and Schroeder-Heister, P., editors), Oxford University Press, 1993, pp. 3142.
[8] Benton, P.N., A mixed linear and non-linear logic: proofs, terms and models, Proceedings of computer science logic '94, Kazimierz, Poland, Lecture Notes in Computer Science, no. 933, Springer-Verlag, Berlin, 1995.
[9] Brookes, S., Main, M., Melton, A., and Mislove, M. (editors), Mathematical foundations of programming semantics, eleventh annual conference, Electronic Notes in Theoretical Computer Science, vol. 1, Elsevier Science, 1995, Tulane University, New Orleans, Louisiana.
[10] Day, B. J., On closed categories of functors, Reports of the midwest category seminar (Lane, S.Mac, editor), Lecture Notes in Mathematics, vol. 137, Springer-Verlag, Berlin-New York, 1970, pp. 138.
[11] Day, B. J., An embedding theoremfor closed categories, Category seminar, Sydney (Kelly, G.M., editor), Lecture Notes in Mathematics, no. 420, Springer-Verlag, Berlin-New York, 1974, pp. 5564.
[12] Došsen, K., A historical introduction to substructural logics, Substructural logics (Došsen, K. and Schroeder-Heister, P., editors), Oxford University Press, 1993, pp. 130.
[13] Dunn, J. M., Conseqution formulation of positive R with co-tenability and t, in [3].
[14] Dunn, J. M., Relevant logic and entailment, Handbook of philosophical logic (Gabbay, D. and Guenthner, F., editors), vol. III: Alternatives in Classical Logic, Synthese Library, no. 166, D. Reidel, Dordrecht, Holland, 1986, pp. 117224.
[15] Girard, J.-Y., Linear logic, Theoretical Computer Science, vol. ? (1987), pp. 1102.
[16] Girard, J.-Y., On the unity of logic, Annals of Pure and Applied Logic, vol. 59 (1993), pp. 201217.
[17] Harland, J. A., Pym, D. J., and Winikoff, M., Programming in Lygon: an overview, Proceedings of AMAST '96 (Berlin) (Wirsing, M. and Nivat, M., editors), Lecture Notes in Computer Science, no. 1101, Springer-Verlag, 1996, pp. 391405.
[18] Hodas, J. S. and Miller, D., Logic programming in a fragment of intuitionistic linear logic, Information and Computation, vol. 110 (1994), no. 2, pp. 327365.
[19] Ishtiaq, S. S. and Pym, D. J., Kripke resource models of a dependently-typed, bunched λ-calculus, in preparation, available at http://www.dcs.qmw.ac.uk/~pym.
[20] Ishtiaq, S. S. and Pym, D. J., A relevant analysis of natural deduction, Journal of Logic and Computation, vol. 8 (1998), no. 6, pp. 809838.
[21] Kleene, S. C., Mathematical logic, Wiley and Sons, 1968.
[22] Kripke, S. A., Semantical analysis of intuitionistic logic I, Formal systems and recursive functions (Crossley, J. N. and Dummett, M. A. E., editors), North-Holland, Amsterdam, 1965, pp. 92130.
[23] Lafont, Y., The linear abstractmachine, Theoretical Computer Science, vol. 59 (1988), pp. 157180.
[24] Lambek, J. and Scott, P. J., Introduction to higher-order categorical logic, Cambridge University Press, Cambridge, England, 1986.
[25] Martin-Löf, P., On the meanings of the logical constants and the justifications of the logical laws, Technical Report 2, Scuola di Specializziazione in Logica Matematica, Universitàa di Siena, 1982.
[26] Miller, D., A logical analysis of modules in logic programming, Journal of Logic Programming, vol. 6 (1989), no. 1 and 2, pp. 79108.
[27] Miller, D., Nadathur, G., Pfenning, F., and ščedrov, A., Uniform proofs as a foundation for logic programming, Annals of Pure and Applied Logic, vol. 51 (1991), pp. 125157.
[28] O'Hearn, P. W., Resource interpretations, bunched implications and the αλ-calculus, in preparation, preliminary version to appear in Typed λ-calculus and applications, Lecture Notes in Computer Science, 1999.
[29] O'Hearn, P. W., Power, A. J., Takeyama, M., and Tennent, R. D., Syntactic control of interference revisited, to appear in Theoretical Computer Science, preliminary version in [9] and in [30].
[30] O'Hearn, P. W. and Tennent, R. D. (editors), Algol-like languages, Birkhäuser, Boston, 1997, two volumes.
[31] Plotkin, G. D., Type theory and recursion, slides for Scottfest talk, 1993.
[32] Pym, D. J., Logic programming with bunched implications, Electronic Notes in Theoretical Computer Science, vol. 17 (1998), extended abstract, 24 pp.
[33] Pym, D. J., The semantics and proof theory of the logic of bunched implications, II: predicate BI, available on the web at http://www.dcs.qmw.ac.uk/~pym, 1998.
[34] Pym, D. J., The semantics and proof theory of the logic of bunched implications, I: Propositional BI, available on the web at http://www.dcs.qmw.ac.uk/~pym, 1998.
[35] Pym, D. J. and Harland, J. A., A uniform proof-theoretic investigation of linear logic programming, Journal of Logic and Computation, vol. 4 (1994), pp. 175207.
[36] Read, S., Relevant logic: a philosophical examination of inference, Basil Blackwell, 1987.
[37] Reynolds, J. C., Syntactic control of interference, Conference record of the fifth annual acm symposium on principles of programming languages (New York), ACM, 01 1978, also in [30], pp. 3946.
[38] Reynolds, J. C., The essence of Algol, Algorithmic languages: Proceedings of the international symposium on algorithmic languages (Amsterdam) (Bakker, J. W. de and Vliet, J. C. van, editors), North-Holland, 10 1981, also in [30], pp. 345372.
[39] Ruet, P. and Fages, F., Concurrent constraint programming and mixed non-commutative linear logic, Proceedings of CSL '97 (Berlin), Lecture Notes in Computer Science, no. 1414, Springer-Verlag, 1997.
[40] Sacerdoti, E. D., A structure for plans and behaviour, Elsevier North Holland, 1977.
[41] Schroeder-Heister, P., Structural frameworks, substructural logics and the role of elimination inferences, Logical frameworks (Huet, G. and Plotkin, G., editors), Cambridge University Press, 1991, pp. 385403.
[42] Seely, R. A. G., Linear logic, *-autonomous categories and cofree coalgebras, Categories in computer science and logic (Providence, Rhode Island) (Gray, J. W. and Scedrov, A., editors), Contemporary Mathematics, no. 92, American Mathematical Society, 1989, pp. 371382.
[43] Troelstra, A. S., Tutorial on linear logic, Substructural logics (Došen, K. and Schroeder-Heister, P., editors), Oxford University Press, 1993, pp. 327355.
[44] Urquhart, A., Semantics for relevant logics, this Journal, vol. 49 (1972), pp. 10591073.

The Logic of Bunched Implications

  • Peter W. O'Hearn (a1) and David J. Pym (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed