Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T20:53:05.407Z Has data issue: false hasContentIssue false


Published online by Cambridge University Press:  13 March 2009

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan (email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we consider certain classes of Eisenstein-type series involving hyperbolic functions, and prove some formulas for them which can be regarded as relevant analogues of our previous results. We can also regard these formulas as certain generalizations of the famous formulas for the ordinary Eisenstein series given by Hurwitz.

Research Article
Copyright © Australian Mathematical Society 2009


[1] Ayoub, R., ‘Euler and the zeta function’, Amer. Math. Monthly 81 (1974), 10671086.CrossRefGoogle Scholar
[2] Berndt, B. C., ‘Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan’, J. Reine Angew Math. 303/304 (1978), 332365.Google Scholar
[3] Berndt, B. C., Ramanujan’s Notebooks, part II (Springer, New York, 1989).CrossRefGoogle Scholar
[4] Berndt, B. C., Ramanujan’s Notebooks, part V (Springer, New York, 1998).CrossRefGoogle Scholar
[5] Cauchy, A., Oeuvres Complètes D’Augustin Cauchy, Série II, Tome VII (Gauthier-Villars, Paris, 1889).Google Scholar
[6] Hurwitz, A., ‘Mathematische Werke. Bd. I: Funktionentheorie’, in: Herausgegeben von der Abteilung für Mathematik und Physik der Eidgenössischen Technischen Hochschule in Zürich (Birkhäuser, Basel, 1962).Google Scholar
[7] Lemmermeyer, F., Reciprocity Laws: From Euler to Eisenstein (Springer, Berlin, 2000).CrossRefGoogle Scholar
[8] Mellin, H., ‘Eine Formel für den Logarithmus transcendenter Funktionen von endlichen Geschlecht’, Acta Soc. Sci. Fennicae 29 (1902), 165183.Google Scholar
[9] Tsumura, H., ‘On functional relations between the Mordell–Tornheim double zeta functions and the Riemann zeta function’, Math. Proc. Cambridge Philos. Soc. 142 (2007), 395405.CrossRefGoogle Scholar
[10] Tsumura, H., ‘On certain analogues of Eisenstein series and their evaluation formulas of Hurwitz type’, Bull. London Math. Soc. 40 (2008), 8593.CrossRefGoogle Scholar