Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T23:51:56.031Z Has data issue: false hasContentIssue false

Disruption of coniferophagous bark beetle (Coleoptera: Curculionidae: Scolytinae) mass attack using angiosperm nonhost volatiles: from concept to operational use

Published online by Cambridge University Press:  13 November 2020

Dezene P.W. Huber*
Affiliation:
1Faculty of Environment, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
Christopher J. Fettig
Affiliation:
2Pacific Southwest Research Station, United States Department of Agriculture Forest Service, 1731 Research Park Drive, Davis, California, 95618, United States of America
John H. Borden
Affiliation:
3JHB Consulting, 6552 Carnegie Street, Burnaby, British Columbia, V5B 1Y3, Canada
*
*Corresponding author. Email: huber@unbc.ca

Abstract

Although the use of nonhost plants intercropped among host crops has been a standard agricultural practice for reducing insect herbivory for millennia, the use of nonhost signals to deter forest pests is much more recent, having been developed over the past several decades. Early exploratory studies with synthetic nonhost volatile semiochemicals led to targeted electrophysiological and trapping experiments on a variety of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) across three continents. This work disclosed a suite of antennally and behaviourally active nonhost volatiles, which are detected in common across a range of coniferophagous bark beetles. It also established the fact that dispersing bark and ambrosia beetles detect nonhost signals while in flight and avoid nonhost trees without necessarily landing on them. Later work showed that groups of synthetic nonhost volatiles, sometimes combined with insect-derived antiaggregants, are effective in protecting individual trees and forest stands. Further work in this system may lead to the development of a variety of new and useful tactics for use in various integrated pest management strategies.

Type
Research Papers
Copyright
© The Author(s) and United States Department of Agriculture – Agricultural Research Service, 2020. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject Editor: Andrew Graves

References

Amman, G.D., Thier, R.W., McGregor, M.D., and Schmitz, R.F. 1989. Efficacy of verbenone in reducing lodgepole pine infestation by mountain pine beetles in Idaho. Canadian Journal of Forest Research, 19: 6064. https://doi.org/10.1139/x89-008.CrossRefGoogle Scholar
Atkins, M.D. 1969. Lipid loss with flight in the Douglas-fir beetle. The Canadian Entomologist, 101: 164165. https://doi.org/10.4039/Ent101164-2.CrossRefGoogle Scholar
Audley, J.P., Fettig, C.J., Munson, A.S., Runyon, J.B., Mortenson, L.A., Steed, B.E., et al. 2020a. Impacts of mountain pine beetle outbreaks on lodgepole pine forests in the Intermountain West, U.S., 2004–2019. Forest Ecology and Management, 475. In press. https://doi.org/10.1016/j.foreco.2020.118403.CrossRefGoogle Scholar
Audley, J.P., Homicz, C.S., Bostock, R.M., and Seybold, S.J. 2020b. A study of landing behaviour by the walnut twig beetle, Pityophthorus juglandis, among host and nonhost hardwood trees in a northern California riparian forest. Agricultural and Forest Entomology. In press. https://doi.org/10.1111/afe.12385.CrossRefGoogle Scholar
Bell, W.J. 1991. Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall, New York, New York, United States of America.Google Scholar
Bentz, B.J., Bonello, E., Delb, H., Fettig, C.J., Poland, T., Pureswaran, D., and Seybold, S.J. 2020. Advances in understanding and managing insect pests of forest trees. In Achieving sustainable forestry volume 1: boreal and temperate forests. Edited by Stanturf, J.. Burleigh Dodds Science Publishing Limited, Cambridge, United Kingdom. Pp. 515585.Google Scholar
Bernays, E.A. and Chapman, R.E. 1994. Host-plant selection by phytophagous insects. Springer US, Boston, Massachusetts, United States of America. https://doi.org/10.1007/b102508.CrossRefGoogle Scholar
Blum, M.S. 1970. The chemical basis of insect sociality. In Chemicals controlling insect behavior. Edited by Beroza, M.. Elsevier, Amsterdam, The Netherlands. Pp. 6194. https://doi.org/10.1016/B978-0-12-093050-0.50011-2.CrossRefGoogle Scholar
Blum, M.S. 1996. Semiochemical parsimony in the Arthropoda. Annual Review of Entomology, 41: 353374. https://doi.org/10.1146/annurev.en.41.010196.002033.CrossRefGoogle ScholarPubMed
Bohman, B., Phillips, R.D., Menz, M.H.M., Berntsson, B.W., Flematti, G.R., Barrow, R.A., et al. 2014. Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytologist, 203: 939952. https://doi.org/10.1111/nph.12800.CrossRefGoogle ScholarPubMed
Borden, J.H. 1997. Disruption of semiochemical-mediated aggregation in bark beetles. In Insect Pheromone Research. Edited by Carde, R.T. and Minks, A.K.. Springer US, Boston, Massachusetts, United States of America. Pp. 421438.CrossRefGoogle Scholar
Borden, J.H. 2020. Management of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) with semiochemicals: letter to a prospective graduate student. The Canadian Entomologist, 153. In press. https://doi.org/10.4039/tce.2020.11.Google Scholar
Borden, J.H., Birmingham, A.L., and Burleigh, J.S. 2006. Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees. The Forestry Chronicle, 82: 579590. https://doi.org/10.5558/tfc82579-4.CrossRefGoogle Scholar
Borden, J.H., Chong, L.J., Earle, T.J., and Huber, D.P.W. 2003. Protection of lodgepole pine from attack by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) using high doses of verbenone in combination with nonhost bark volatiles. The Forestry Chronicle, 79: 685691. https://doi.org/10.5558/tfc79685-3.CrossRefGoogle Scholar
Borden, J.H., Chong, L.J., Savoie, A., and Wilson, I.M. 1997. Responses to green leaf volatiles in two biogeoclimatic zones by striped ambrosia beetle, Trypodendron lineatum . Journal of Chemical Ecology, 23: 24792491. https://doi.org/10.1023/B:JOEC.0000006661.99953.26.CrossRefGoogle Scholar
Borden, J.H., Ryker, L.C., Chong, L.J., Pierce, H.D. Jr., Johnston, B.D., and Oehlschlager, A.C. 1987. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Canadian Journal of Forest Research, 17: 118128.CrossRefGoogle Scholar
Borden, J.H., Wilson, I.M., Gries, R., Chong, L.J., Pierce, H.D. Jr., and Gries, G. 1998. Volatiles from the bark of trembling aspen, Populus tremuloides Michx. (Salicaceae) disrupt secondary attraction by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Chemoecology, 8: 6975. https://doi.org/10.1007/PL00001806.CrossRefGoogle Scholar
Brattli, J.G., Andersen, J., and Nilssen, A.C. 1998. Primary attraction and host tree selection in deciduous and conifer living Coleoptera: Scolytidae, Curculionidae, Cerambycidae and Lymexylidae. Journal of Applied Entomology, 122: 345352. https://doi.org/10.1111/j.1439-0418.1998.tb01511.x.CrossRefGoogle Scholar
Byers, J.A. 1995. Host-tree chemistry affecting colonization in bark beetles. In Chemical ecology of insects 2. Edited by Carde, R.T. and Bell, W.J.. Springer, Boston, Massachusetts, United States of America. Pp. 154213.CrossRefGoogle Scholar
Byers, J.A., Wood, D.L., Craig, J., and Hendry, L.B. 1984. Attractive and inhibitory pheromones produced in the bark beetle Dendroctonus brevicomis, during host colonization: regulation of inter- and intraspecific competition. Journal of Chemical Ecology, 10: 861877. https://doi.org/10.1007/BF00987969.CrossRefGoogle ScholarPubMed
Byers, J.A., Zhang, Q.-H., and Birgersson, G. 2000. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften, 87: 503507. https://doi.org/10.1007/s001140050768.CrossRefGoogle Scholar
Byers, J.A., Zhang, Q.-H., Schlyter, F., and Birgersson, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften, 85: 557561. https://doi.org/10.1007/s001140050551.CrossRefGoogle Scholar
Chapman, J.A. 1962. Field studies on attack flight and log selection by the ambrosia beetle Trypodendron lineatum (Oliv.) (Coleoptera: Scolytidae). The Canadian Entomologist, 94: 7492.CrossRefGoogle Scholar
Chapman, J.A. 1963. Field selection of different log odors by scolytid beetles. The Canadian Entomologist, 95: 673676.CrossRefGoogle Scholar
Dahlsten, D.L. 1982. Relationships between bark beetles and their natural enemies. In Bark beetles in North American conifers. Edited by Mitton, J.B. and Sturgeon, K.B.. University of Texas Press, Austin, Texas, United States of America. Pp. 140182.Google Scholar
Deglow, E.K. and Borden, J.H. 1998a. Green leaf volatiles disrupt and enhance response by the ambrosia beetle, Gnathotrichus retusus (Coleoptera: Scolytidae) to pheromone-baited traps. Journal of the Entomological Society of British Columbia, 95: 916.Google Scholar
Deglow, E.K. and Borden, J.H. 1998b. Green leaf volatiles disrupt and enhance response to aggregation pheromones by the ambrosia beetle, Gnathotrichus sulcatus (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 28: 16971705. https://doi.org/10.1139/x98-143.CrossRefGoogle Scholar
Dickens, J.C., Billings, R.F., and Payne, T.L. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia, 48: 523524. https://doi.org/10.1007/BF01928180.CrossRefGoogle Scholar
Elkinton, J.S. and Wood, D.L. 1980. Feeding and boring behavior of the bark beetle Ips paraconfusus (Coleoptera: Scolytidae) on the bark of a host and non-host tree species. The Canadian Entomologist, 112: 797809. https://doi.org/10.4039/Ent112797-8.CrossRefGoogle Scholar
Erbilgin, N., Gillette, N.E., Mori, S.R., Stein, J.D., Owen, D.R., and Wood, D.L. 2007. Acetophenone as an anti-attractant for the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Journal of Chemical Ecology, 33: 817823. https://doi.org/10.1007/s10886-007-9267-4.CrossRefGoogle Scholar
Erbilgin, N., Gillette, N.E., Owen, D.R., Mori, S.R., Nelson, A.S., Uzoh, F., and Wood, D.L. 2008. Acetophenone superior to verbenone for reducing attraction of western pine beetle Dendroctonus brevicomis to its aggregation pheromone. Agricultural and Forest Entomology, 10: 433441. https://doi.org/10.1111/j.1461-9563.2008.00407.x.CrossRefGoogle Scholar
Evenden, M.L., Whitehouse, C.M., and Sykes, J. 2014. Factors influencing flight capacity of the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). Environmental Entomology, 43: 187196. https://doi.org/10.1603/EN13244.CrossRefGoogle Scholar
Fettig, C.J., Bulaon, B.M., Dabney, C.P., Hayes, C.J., and McKelvey, S.R. 2012a. Verbenone Plus reduces levels of tree mortality attributed to mountain pine beetle infestations in whitebark pine, a tree species of concern. Journal of Biofertilizers & Biopesticides, 3: 15. https://doi.org/10.4172/2155-6202.1000123.Google Scholar
Fettig, C.J., Burnside, R.E., Hayes, C.J., Kruse, J.J., Lisuzzo, N.J., McKelvey, S.R., et al. 2013. Factors influencing northern spruce engraver colonization of white spruce slash in interior Alaska. Forest Ecology and Management, 289: 5868. https://doi.org/10.1016/j.foreco.2012.09.040.CrossRefGoogle Scholar
Fettig, C.J., Dabney, C.P., McKelvey, S.R., and Huber, D.P.W. 2008. Nonhost angiosperm volatiles and verbenone protect individual ponderosa pines from attack by western pine beetle and red turpentine beetle (Coleoptera: Curculionidae, Scolytinae). Western Journal of Applied Forestry, 23: 4045. https://doi.org/10.1093/wjaf/23.1.40.CrossRefGoogle Scholar
Fettig, C.J., McKelvey, S.R., Borys, R.R., Dabney, C.P., Hamud, S.M., Nelson, L.J., and Seybold, S.J. 2009a. Efficacy of verbenone for protecting ponderosa pine stands from western pine beetle (Coleoptera: Curculionidae: Scolytinae) attack in California. Journal of Economic Entomology, 102: 18461858. https://doi.org/10.1603/029.102.0515.CrossRefGoogle ScholarPubMed
Fettig, C.J., McKelvey, S.R., Dabney, C.P., Borys, R.R., and Huber, D.P.W. 2009b. Response of Dendroctonus brevicomis to different release rates of nonhost angiosperm volatiles and verbenone in trapping and tree protection studies. Journal of Applied Entomology, 133: 143154. https://doi.org/10.1111/j.1439-0418.2008.01317.x.CrossRefGoogle Scholar
Fettig, C.J., McKelvey, S.R., Dabney, C.P., and Huber, D.P.W. 2012b. Responses of Dendroctonus brevicomis (Coleoptera: Curculionidae) in behavioral assays: implications to development of a semiochemical-based tool for tree protection. Journal of Economic Entomology, 105: 149160. https://doi.org/10.1603/EC11121.CrossRefGoogle ScholarPubMed
Fettig, C.J., McKelvey, S.R., Dabney, C.P., Huber, D.P.W., Lait, C.G., Fowler, D.L., and Borden, J.H. 2012c. Efficacy of “Verbenone Plus” for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California. Journal of Economic Entomology, 105: 16681680. https://doi.org/10.1603/EC12184.CrossRefGoogle ScholarPubMed
Fettig, C.J., McKelvey, S.R., and Huber, D.P.W. 2005. Nonhost angiosperm volatiles and verbenone disrupt response of western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae), to attractant-baited traps. Journal of Economic Entomology, 98: 20412048. https://doi.org/10.1603/0022-0493-98.6.2041.CrossRefGoogle Scholar
Fettig, C.J. and Munson, A.S. 2020. Efficacy of verbenone and a blend of verbenone and nonhost volatiles for protecting lodgepole pine from mountain pine beetle (Coleoptera: Curculionidae). Agricultural and Forest Entomology, 22: 356357. https://doi.org/10.1111/afe.12392.CrossRefGoogle Scholar
Furniss, M.M. and Furniss, R.L. 1972. Scolytids (Coleoptera) on snowfields above timberline in Oregon and Washington. The Canadian Entomologist, 104: 14711478.CrossRefGoogle Scholar
Gillette, N.E. and Fettig, C.J. 2020. Semiochemicals for bark beetle management: where do we go from here? The Canadian Entomologist, 153. In press. https://doi.org/10.4039/tce.2020.61.Google Scholar
Gillette, N.E., Stein, J.D., Owen, D.R., Webster, J.N., Fiddler, G.O., Mori, S.R., and Wood, D.L. 2006. Verbenone-releasing flakes protect individual Pinus contorta trees from attack by Dendroctonus ponderosae and Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae). Agricultural and Forest Entomology, 8: 243251. https://doi.org/10.1111/j.1461-9563.2006.00303.x.CrossRefGoogle Scholar
Graves, A.D., Holsten, E.H., Ascerno, M.E., Zogas, K.P., Hard, J.S., Huber, D.P.W., et al. 2008. Protection of spruce from colonization by the bark beetle, Ips perturbatus, in Alaska. Forest Ecology and Management, 256: 18251839. https://doi.org/10.1016/j.foreco.2008.07.008.CrossRefGoogle Scholar
Gries, G., Nolte, R., and Sanders, W. 1989. Computer simulated host selection in Ips typographus . Entomologia Experimentalis et Applicata, 53: 211217. https://doi.org/10.1111/j.1570-7458.1989.tb03568.x.CrossRefGoogle Scholar
Hansen, E.M., Munson, A.S., Blackford, D.C., Graves, A.D., Coleman, T.W., and Baggett, L.S. 2017. 3-Methylcyclohex-2-en-1-one for area and individual tree protection against spruce beetle (Coleoptera: Curculionidae: Scolytinae) attack in the southern Rocky Mountains. Journal of Economic Entomology, 110: 21402148. https://doi.org/10.1093/jee/tox208.CrossRefGoogle ScholarPubMed
Hansen, E.M., Munson, A.S., Blackford, D.C., Wakarchuk, D., and Baggett, L.S. 2016. Lethal trap trees and semiochemical repellents as area host protection strategies for spruce beetle (Coleoptera: Curculionidae, Scolytinae) in Utah. Journal of Economic Entomology, 109: 21372144. https://doi.org/10.1093/jee/tow172.CrossRefGoogle Scholar
Hansen, E.M., Munson, A.S., Wakarchuk, D., Blackford, D.C., Graves, A.D., Stephens, S.S., and Moan, J.E. 2019. Advances in semiochemical repellents to mitigate host mortality from the spruce beetle (Coleoptera: Curculionidae). Journal of Economic Entomology, 112: 22532261. https://doi.org/10.1093/jee/toz172.CrossRefGoogle Scholar
Herms, D.A. and Mattson, W.J. 1992. The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67: 283335. https:doi.org/10.1086/417659.CrossRefGoogle Scholar
Huber, D.P.W., Aukema, B.H., Hodgkinson, R.S., and Lindgren, B.S. 2009. Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce Picea engelmannii×glauca by mountain pine beetle Dendroctonus ponderosae . Agricultural and Forest Entomology, 11: 8389. https://doi.org/10.1111/j.1461-9563.2008.00411.x.CrossRefGoogle Scholar
Huber, D.P.W. and Borden, J.H. 2001a. Angiosperm bark volatiles disrupt response of Douglas-fir beetle, Dendroctonus pseudotsugae, to attractant-baited traps. Journal of Chemical Ecology, 27: 217233. https://doi.org/10.1023/A:1005668019434.CrossRefGoogle ScholarPubMed
Huber, D.P.W. and Borden, J.H. 2001b. Protection of lodgepole pines from mass attack by mountain pine beetle, Dendroctonus ponderosae, with nonhost angiosperm volatiles and verbenone. Entomologia Experimentalis et Applicata, 99: 131141. https://doi.org/10.1046/j.1570-7458.2001.00811.x.CrossRefGoogle Scholar
Huber, D.P.W. and Borden, J.H. 2003. Comparative behavioural responses of Dryocoetes confusus Swaine, Dendroctonus rufipennis (Kirby), and Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae) to angiosperm tree bark volatiles. Environmental Entomology, 32: 742751. https://doi.org/10.1603/0046-225X-32.4.742.CrossRefGoogle Scholar
Huber, D.P.W., Borden, J.H., Jeans-Williams, N.L., and Gries, R. 2000a. Differential bioactivity of conophthorin on four species of North American bark beetles (Coleoptera: Scolytidae). The Canadian Entomologist, 132: 649653. https://doi.org/10.4039/Ent132649-5.CrossRefGoogle Scholar
Huber, D.P.W., Borden, J.H., and Stastny, M. 2001. Response of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), to conophthorin and other angiosperm bark volatiles in the avoidance of non-hosts. Agricultural and Forest Entomology, 3: 225232. https://doi.org/10.1046/j.1461-9555.2001.00111.x.CrossRefGoogle Scholar
Huber, D.P.W., Gries, R., Borden, J.H., and Pierce, H.D. Jr. 1999. Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms. Journal of Chemical Ecology, 25: 805816. https://doi.org/10.1023/A:1020892700653.CrossRefGoogle Scholar
Huber, D.P.W., Gries, R., Borden, J.H., and Pierce, H.D. Jr. 2000b. A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to bark volatiles of six species of angiosperm trees. Chemoecology, 10: 103113. https://doi.org/10.1007/PL00001811.CrossRefGoogle Scholar
Jactel, H., Van Halder, I., Menassieu, P., Zhang, Q.H., and Schlyter, F. 2001. Non-host volatiles disrupt the response of the stenographer bark beetle, Ips sexdentatus (Coleoptera: Scolytidae), to pheromone-baited traps and maritime pine logs. Integrated Pest Management Reviews, 6: 197207. https://doi.org/10.1023/A:1025775419193.CrossRefGoogle Scholar
Jenkins, M., Hebertson, E., and Munson, A. 2014. Spruce beetle biology, ecology and management in the Rocky Mountains: an addendum to spruce beetle in the Rockies. Forests, 5: 2171. https://doi.org/10.3390/f5010021.CrossRefGoogle Scholar
Kinzer, G.W., Fentiman, A.F., Page, T.F., Foltz, R.L., Vité, J.P., and Pitman, G.B. 1969. Bark beetle attractants: identification, synthesis and field bioassay of a new compound isolated from Dendroctonus . Nature, 221: 477478. https://doi.org/10.1038/221477a0.CrossRefGoogle Scholar
Kühnholz, S., Gries, R., and Borden, J.H. 2020. Semiochemical-mediated aggregation of the ambrosia beetle Trypodendron betulae (Coleoptera: Curculionidae: Scolytinae). The Canadian Entomologist, 153. In press. https://doi.org/10.4039/tce.2019.81.Google Scholar
Lindgren, B.S., Borden, J.H., Cushon, G.H., Chong, L.J., and Higgins, C.J. 1989. Reduction of mountain pine beetle (Coleoptera: Scolytidae) attacks by verbenone in lodgepole pine stands in British Columbia. Canadian Journal of Forest Research, 19: 6568.CrossRefGoogle Scholar
Mahalovich, M. and Stritch, L. 2013. Pinus albicaulis. The IUCN Red List of Threatened Species 2013: e.T39049A2885918. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T39049A2885918.en.CrossRefGoogle Scholar
Maroja, L.S., Bogdanowicz, S.M., Wallin, K.F., Raffa, K.F., and Harrison, R.G. 2007. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Molecular Ecology, 16: 25602573. https://doi.org/10.1111/j.1365-294X.2007.03320.x.CrossRefGoogle Scholar
McKee, F.R., Huber, D.P.W., and Aukema, B.H. 2013. Effect of host species and competitors on mountain pine beetle reproduction in interior hybrid spruce vs. lodgepole pine. Agricultural and Forest Entomology, 15: 310320. https://doi.org/10.1111/afe.12019.CrossRefGoogle Scholar
McKee, F.R., Huber, D.P.W., Hodgkinson, R.S., Lindgren, B.S., and Aukema, B.H. 2015. Effect of natal and present host on female mountain pine beetle host acceptance and male joining behaviour in lodgepole pine vs. interior hybrid spruce. The Canadian Entomologist, 147: 3945. https://doi.org/10.4039/tce.2014.22.CrossRefGoogle Scholar
McMullen, L.H. and Atkins, M.D. 1962. On the flight and host selection of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. (Coleoptera: Scolytidae). The Canadian Entomologist, 94: 13091325. https://doi.org/10.4039/Ent941309-12.CrossRefGoogle Scholar
Moeck, H.A. and Simmons, C.S. 1991. Primary attraction of mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae), to bolts of lodgepole pine. The Canadian Entomologist, 123: 299304. https://doi.org/10.4039/Ent123299-2.CrossRefGoogle Scholar
Moeck, H.A., Wood, D.L., and Lindahl, K.Q. 1981. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomis . Journal of Chemical Ecology, 7: 4983. https://doi.org/10.1007/BF00988635.CrossRefGoogle Scholar
Morris, J.L., Mustaphi, C.J., Carter, V.A., Watt, J., Derr, K., Pisaric, M.F., et al. 2015. Do bark beetle remains in lake sediments correspond to severe outbreaks? A review of published and ongoing research. Quaternary International, 11: 7286.CrossRefGoogle Scholar
Ott, D.S., Fettig, C.J., Munson, A.S., Runyon, J.B., and Ross, D.W. 2021. Physical and chemical characteristics of blue and Engelmann spruces relative to spruce beetle host selection and colonization. Forest Ecology and Management, 479. In press. https://doi.org/10.1016/j.foreco.2020.118577.CrossRefGoogle Scholar
Perrin, T.E., Rasmussen, L.E.L., Gunawardena, R., and Rasmussen, R.A. 1996. A method for collection, long-term storage, and bioassay of labile volatile chemosignals. Journal of Chemical Ecology, 22: 207221. https://doi.org/10.1007/BF02055093.CrossRefGoogle ScholarPubMed
Pickett, J.A., Woodcock, C.M., Midega, C.A., and Khan, Z.R. 2014. Push–pull farming systems. Current Opinion in Biotechnology, 26: 125132. https://doi.org/10.1016/j.copbio.2013.12.006.CrossRefGoogle ScholarPubMed
Pitman, G.B., Vité, J.P., Kinzer, G.W., and Fentiman, A.F. 1969. Specificity of population-aggregating pheromones in Dendroctonus . Journal of Insect Physiology, 15: 363366. https://doi.org/10.1016/002-1910(69)90282-0.CrossRefGoogle Scholar
Poland, T.M., Borden, J.H., Stock, A.J., and Chong, L.J. 1998. Green leaf volatiles disrupt responses by the spruce beetle, Dendroctonus rufipennis, and the western pine beetle, Dendroctonus brevicomis (Coleoptera: Scolytidae) to attractant-baited traps. Journal of the Entomological Society of British Columbia, 95: 1724.Google Scholar
Poland, T.M. and Haack, R.A. 2001. Pine shoot beetle, Tomicus piniperda (Col., Scolytidae), responses to common green leaf volatiles. Journal of Applied Entomology, 124: 6369. https://doi.org/10.1046/j.1439-0418.2000.00448.x.CrossRefGoogle Scholar
Progar, R.A., Gillette, N., Fettig, C.J., and Hrinkevich, K. 2014. Applied chemical ecology of the mountain pine beetle. Forest Science, 60: 414433. https://doi.org/10.5849/forsci.13-010.CrossRefGoogle Scholar
Pureswaran, D.S. and Borden, J.H. 2003. Test of semiochemical mediated host specificity in four species of tree killing bark beetles (Coleoptera: Scolytidae). Environmental Entomology, 32: 963969. https://doi.org/10.1603/0046-225X-32.5.963.CrossRefGoogle Scholar
Raffa, K.F. and Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs, 53: 2749. https://doi.org/10.2307/1942586.CrossRefGoogle Scholar
Ranger, C.M., Gorzlancyk, A.M., Addesso, K.M., Oliver, J.B., Reding, M.E., Schultz, P.B., and Held, D.W. 2014. Conophthorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (Coleoptera: Curculionidae) to ethanol. Agricultural and Forest Entomology, 16: 327334. https://doi.org/10.1111/afe.12062.CrossRefGoogle Scholar
Rudinsky, J.A., Morgan, M.E., Libbey, L.M., and Putnam, T.B. 1974. Antiaggregative-rivalry pheromone of the mountain pine beetle, and a new arrestant of the southern pine beetle. Environmental Entomology, 3: 9098. https://doi.org/10.1093/ee/3.1.90.CrossRefGoogle Scholar
Ryker, L.C. and Libbey, L.M. 1982. Frontalin in the male mountain pine beetle. Journal of Chemical Ecology, 8: 13991409. https://doi.org/10.1007/BF01403103.CrossRefGoogle ScholarPubMed
Ryker, L.C. and Yandell, K.L. 1983. Effect of verbenone on aggregation of Dendroctonus ponderosae Hopkins (Coleoptera, Scolytidae) to synthetic attractant. Zeitschrift für Angewandte Entomologie, 96: 452459. https://doi.org/10.1111/j.1439-0418.1983.tb03698.x.CrossRefGoogle Scholar
Scala, A., Allmann, S., Mirabella, R., Haring, M.A., and Schuurink, R.C. 2013. Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences, 14: 1778117811. https://doi.org/10.3390/ijms140917781.CrossRefGoogle ScholarPubMed
Schlyter, F., Zhang, Q.-H., Anderson, P., Byers, J.A., Wadhams, L.J., Löfqvist, J., and Birgersson, G. 2000. Electrophysiological and behavioural responses of Tomicus piniperda and Tomicus minor (Coleoptera: Scolytidae) to non-host leaf and bark volatiles. The Canadian Entomologist, 132: 965981. https://doi.org/10.4039/Ent132965-6.CrossRefGoogle Scholar
Schroeder, L.M. 1992. Olfactory recognition of nonhosts aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliatus . Journal of Chemical Ecology, 18: 15831593. https://doi.org/10.1007/BF00993231.CrossRefGoogle Scholar
Seybold, S.J., Bentz, B.J., Fettig, C.J., Lundquist, J.E., Progar, R.A., and Gillette, N.E. 2018. Management of western North American bark beetles with semiochemicals. Annual Review of Entomology, 63: 407432. https://doi.org/10.1146/annurev-ento-020117-043339.CrossRefGoogle ScholarPubMed
Seybold, S.J., Huber, D.P.W., Lee, J.C., Graves, A.D., and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews, 5: 143178. https://doi.org/10.1007/s11101-006-9002-8.CrossRefGoogle Scholar
Shepherd, W.P., Huber, D.P.W., Seybold, S.J., and Fettig, C.J. 2007. Antennal responses of the western pine beetle, Dendroctonus brevicomis (Coleoptera: Curculionidae), to stem volatiles of its primary host, Pinus ponderosa, and nine sympatric nonhost angiosperms and conifers. Chemoecology, 17: 209221. https://doi.org/10.1007/s00049-007-0378-8.CrossRefGoogle Scholar
Stökl, J., Brodmann, J., Dafni, A., Ayasse, M., and Hansson, B.S. 2011. Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proceedings of the Royal Society B: Biological Sciences, 278: 12161222. https://doi.org/10.1098/rspb.2010.1770.CrossRefGoogle ScholarPubMed
Tømmerås, B.Å. and Mustaparta, H. 1989. Single cell responses to pheromones, host and non-host volatiles in the ambrosia beetle Trypodendron lineatum . Entomologia Experimentalis et Applicata, 52: 141148. https://doi.org/10.1111/j.1570-7458.1989.tb01260.x.CrossRefGoogle Scholar
Wilson, I.M., Borden, J.H., Gries, R., and Gries, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Journal of Chemical Ecology, 22: 18611875. https://doi.org/10.1007/BF02028509.CrossRefGoogle Scholar
Zhang, Q.-H. 2003. Interruption of aggregation pheromone in Ips typographus (L.) (Col. iii) by non-host bark volatiles. Agricultural and Forest Entomology, 5: 145153. https://doi.org/10.1046/j.1461-9563.2003.00173.x.CrossRefGoogle Scholar
Zhang, Q.-H., Birgersson, G., Zhu, J., Löfstedt, C., Löfqvist, J., and Schlyter, F. 1999a. Leaf volatiles from nonhost deciduous trees: variation by tree species, season and temperature, and electrophysiological activity in Ips typographus . Journal of Chemical Ecology, 25: 19231943. https://doi.org/10.1023/A:1020994119019.CrossRefGoogle Scholar
Zhang, Q.-H. and Schlyter, F. 2004. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 6: 120. https://doi.org/10.1111/j.1461-9555.2004.00202.x.CrossRefGoogle Scholar
Zhang, Q.-H., Schlyter, F., and Anderson, P. 1999b. Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus . Journal of Chemical Ecology, 25: 28472861. https://doi.org/10.1023/A:1020816011131.CrossRefGoogle Scholar
Zhang, Q.-H., Schlyter, F., and Birgersson, G. 2000. Bark volatiles from nonhost angiosperm trees of spruce bark beetle, Ips typographus (L.) (Coleoptera: Scolytidae): chemical and electrophysiological analysis. Chemoecology, 10: 6980. https://doi.org/10.1007/s000490050010.CrossRefGoogle Scholar
Zhang, Q.-H., Schlyter, F., Chen, G., and Wang, Y. 2007. Electrophysiological and behavioral responses of Ips subelongatus to semiochemicals from its hosts, non-hosts, and conspecifics in China. Journal of Chemical Ecology, 33: 391404. https://doi.org/10.1007/s10886-006-9231-8.CrossRefGoogle ScholarPubMed
Zhang, Q.-H., Tolasch, T., Schlyter, F., and Francke, W. 2002. Enantiospecific antennal response of bark beetles to spiroacetal (E)-conophthorin. Journal of Chemical Ecology, 28: 18391852. https://doi.org/10.1023/A:1020569303433.CrossRefGoogle Scholar
Zhao, T., Ganji, S., Schiebe, C., Bohman, B., Weinstein, P., Krokene, P., et al. 2019. Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. The ISME Journal, 13: 15351545. https://doi.org/10.1038/s41396-019-0370-7.CrossRefGoogle ScholarPubMed