Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-09T16:02:59.229Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Life history of a secondary bark beetle, Pseudips mexicanus (Coleoptera: Curculionidae: Scolytinae), in lodgepole pine in British Columbia

Published online by Cambridge University Press:  02 April 2012

G.D. Smith*
Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
A.L. Carroll
Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
B.S. Lindgren
University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
1Corresponding author (e-mail:


Pseudips mexicanus (Hopkins) is a secondary bark beetle native to western North and Central America that attacks most species of pine (Pinus L. (Pinaceae)) within its range. A pair of life-history studies examined P. mexicanus in other host species, but until now, no work has been conducted on lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). Pseudips mexicanus in lodgepole pine was found to be polygynous. Galleries were shorter, offspring smaller, and the eggs laid per niche and the potential progeny fewer than in populations from California and Guatemala. Development from the time of female attack to emergence of adult offspring took less than 50 days at 26.5 °C, and the accumulated heat required to complete the life cycle was determined to be 889.2 degree days above 8.5 °C, indicating that in the northern portion of its range P. mexicanus is univoltine. Determination of these life-history traits will facilitate study of interactions between P. mexicanus and other bark beetle associates in lodgepole pine.


Pseudips mexicanus (Hopkins) est un scolyte de l’écorce secondaire, indigène de l’ouest de l’Amérique du Nord et de l’Amérique centrale, qui attaque la plupart des espèces de pins (Pinus L. (Pinaceae)) dans son aire de répartition. Deux études ont examiné le cycle biologique de P. mexicanus chez d’autres espèces d’hôtes, mais à ce jour, aucun travail n’a été réalisé sur le pin tordu (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). Pseudips mexicanus est polygyne sur le pin tordu. Les galeries sont plus courtes, les rejetons plus petits, et les oeufs pondus par niche et la progéniture potentielle moins nombreux que dans les populations de Californie et du Guatemala. Le développement depuis l’attaque des femelles jusqu’à l’émergence des rejetons adultes prend moins de 50 jours à 26,5 °C et la chaleur accumulée nécessaire pour compléter le cycle biologique est estimée à 889,2 degrés-jours au-dessus de 8,5 °C, ce qui indique que P. mexicanus est univoltin dans la partie nord de son aire de répartition. La détermination de ces traits du cycle biologique facilitera l’étude des interactions entre P. mexicanus et les autres scolytes de l’écorce qui lui sont associés sur le pin tordu.

[Traduit par la Rédaction]

Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Amezaga, I., and Rodriguez, M.A. 1998. Resource partitioning of four sympatric bark beetles depending on swarming dates and tree species. Forest Ecology and Management, 109: 127135.Google Scholar
Amman, G.D. 1972. Some factors affecting oviposition behavior of the mountain pine beetle. Environmental Entomology, 1: 691695.Google Scholar
Amman, G.D. 1984. Mountain pine beetle (Coleoptera: Scolytidae) mortality in three types of infestations. Environmental Entomology, 13: 184191.Google Scholar
Amman, G.D., and Cole, W.E. 1983. Mountain pine beetle dynamics in lodgepole pine forests. Part II: Population dynamics. United States Department of Agriculture Forest Service Intermountain Forest and Range Experiment Station General Technical Report INT-145.Google Scholar
Avery, T.E., and Burkhart, H.E. 2002. Forest measurements. McGraw-Hill, New York.Google Scholar
Ayres, B.D., Ayres, M.P., Abrahamson, M.D., and Teale, S.A. 2001. Resource partitioning and overlap in three sympatric species of Ips bark beetles (Coleoptera: Scolytidae). Oecologia, 128: 443453.Google Scholar
Bentz, B.J., Logan, J.A., and Vandygriff, J.C. 2001. Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size. The Canadian Entomologist, 133: 375387.Google Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle–fungus associations. BioScience, 22: 598602.Google Scholar
Borsa, P., and Kjellberg, F. 1996. Secondary sex ratio adjustment in a pseudo-arrhenotokous insect, Hypothenemus hampei (Coleoptera: Scolytidae). Comptes Rendus de l'Académie des Sciences Série III Sciences de la Vie, 319: 11591166.Google Scholar
Bright, D.E. 1976. The insects and arachnids of Canada. Part 2: The bark beetles of Canada and Alaska: Coleoptera, Scolytidae. Canada Department of Agriculture, Ottawa, Ontario.Google Scholar
Bright, D.E., and Stark, R.W. (Editors). 1973. The bark and ambrosia beetles of California (Coleoptera: Scolytidae and Platypodidae). University of California Press, Los Angeles, California.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, 11: 431438.Google Scholar
Cognato, A.I. 2000. Phylogenetic analysis reveals new genus of Ipini bark beetle (Scolytidae). Annals of the Entomological Society of America, 93: 362366.Google Scholar
Cole, W.E. 1973. Crowding effects among single-age larvae of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Environmental Entomology, 2: 285293.Google Scholar
De Jong, M.C.M., and Sabelis, M.W. 1988. How bark beetles avoid interference with squatters: an ESS for colonization by Ips typographus. Oikos, 51: 8896.Google Scholar
Domingue, M.J., and Teale, S.A. 2007. Inbreeding depression and its effects on intrinsic population dynamics in engraver beetles. Ecological Entomology, 32: 201210.Google Scholar
Dyar, H.G. 1890. The number of molts of lepidopterous larvae. Psyche (Cambridge), 5: 420422.Google Scholar
Eckhardt, L.G., Jones, J.P., and Klepzig, K.D. 2004. Pathogenicity of Leptographium species associated with loblolly pine decline. Plant Disease, 88: 11741178. doi:10.1094/PDIS.2004.88.11.1174.Google Scholar
Environment Canada. 2007. Environment Canada Products and Services [online]. Available from [accessed 12 June 2006].Google Scholar
Fox, J.W., Wood, D.L., and Koehler, C.S. 1990. Distribution and abundance of engraver beetles (Scolytidae: Ips species) on Monterey pines infected with pitch canker. The Canadian Entomologist, 122: 11571166.Google Scholar
Fox, J.W., Wood, D.L., and Koehler, C.S. 1991. Engraver beetles (Scolytidae: Ips species) as vectors of the pitch canker fungus, Fusarium subglutinans. The Canadian Entomologist, 123: 13551367.Google Scholar
Gilbert, N., and Raworth, D.A. 1996. Insects and temperature — a general theory. The Canadian Entomologist, 128: 113.Google Scholar
Hansen, E.M., and Bentz, B.J. 2003. Comparison of reproductive capacity among univoltine, semivoltine and re-emerged parent spruce beetles (Coleoptera: Scolytidae). The Canadian Entomologist, 135: 697712.Google Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society, 77: 293352.Google Scholar
Lanier, G.N., and Wood, D.L. 1968. Controlled mating, karyology, morphology, and sex-ratio in the Dendroctonus ponderosae complex. Annals of the Entomological Society of America, 61: 517526.Google Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist, 115: 229302.Google Scholar
Lissemore, F.M. 1997. Frass clearing by male pine engraver beetles (Ips pini; Scolytidae): paternal care or paternity assurance? Behavioral Ecology, 8: 318325.Google Scholar
Logan, J.A., and Powell, J.A. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47: 160173.Google Scholar
McGhehey, J.H. 1971. Female size and egg production of the mountain pine beetle, Dendroctonus ponderosae Hopkins. Northern Forest Research Centre, Canadian Forestry Service, Edmonton, Alberta, Information Report NOR-X-9.Google Scholar
McNee, W.R., Wood, D.L., and Storer, A.J. 2000. Pre-emergence feeding in bark beetles (Coleoptera: Scolytidae). Population Ecology, 29: 495501.Google Scholar
Miller, D.R., and Borden, J.H. 1985. Life history and biology of Ips latidens (LeConte) (Coleoptera: Scolytidae). The Canadian Entomologist, 117: 859871.Google Scholar
Nebeker, T.E., Hodges, J.D., and Blanche, C.A. 1993. Host response to bark beetle and pathogen colonization. In Beetle–pathogen interactions in conifer forests. Edited by Schowalter, T.D. and Filip, G.M.. Academic Press, New York. pp. 157173.Google Scholar
Paine, T.D., Birch, M.C., and Svihra, P. 1981. Niche breadth and resource partitioning by four sympatric species of bark beetles (Coleoptera: Scolytidae). Oecologia, 48: 16.Google Scholar
Paine, T.D., Raffa, K.F., and Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42: 179206.Google Scholar
Prebble, M.L. 1933. The larval development of three bark beetles. The Canadian Entomologist, 65: 145150.Google Scholar
Raffa, K.F., and Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs, 53: 2749.Google Scholar
Reid, M.L. 1999. Monogamy in the bark beetle Ips latidens: ecological correlates of an unusual mating system. Ecological Entomology, 24: 8994.Google Scholar
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay Region of British Columbia. I. Life Cycle, brood development and flight periods. The Canadian Entomologist, 94: 531538.Google Scholar
Reid, R.W., Whitney, H.S., and Watson, J.A. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Canadian Journal of Botany, 45: 11151126.Google Scholar
Safranyik, L. 1976. Size- and sex-related emergence, and survival in cold storage, of mountain pine beetle adults. The Canadian Entomologist, 108: 209212.Google Scholar
Safranyik, L., and Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by Safranyik, L. and Wilson, B.. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia. pp. 366.Google Scholar
Safranyik, L., and Linton, D.A. 1983. Brood production by three spp. of Dendroctonus (Coleoptera: Scolytidae) in bolts of host and non-host trees. Journal of the Entomological Society of British Columbia, 80: 1013.Google Scholar
Safranyik, L., Shore, T.L., and Linton, D.A. 1996. Ipsdienol and lanierone increase Ips pini Say (Coleoptera: Scolytidae) attack and brood density in lodgepole pine infested by mountain pine beetle. The Canadian Entomologist, 128: 199207.Google Scholar
Safranyik, L., Linton, D.A., and Shore, T.L. 1999. Emergence of Ips pini and Hylurgops porosus (Coleoptera: Scolytidae) from duff at the base of lodgepole pines (Pinaceae) killed by mountain pine beetle (Coleoptera: Scolytidae). The Canadian Entomologist, 131: 825827.Google Scholar
Schwerdtfeger, F. 1956. Scolytidae (Col.) an Pinus-Arten in Mittleamerika: I. Das genus Ips De Geer. Zeitschrift für Angewandte Entomologie, 39: 3457.Google Scholar
Shrimpton, D.M. 1973. Age- and size-related response of lodgepole pine to inoculation with Europhium clavigerum. Canadian Journal of Botany, 51: 11551160.Google Scholar
Six, D.L. 2003. Bark beetle–fungus symbioses. In Insect symbioses. Edited by Bourtzis, K. and Miller, T.. CRC Press, Boca Raton, Florida. pp. 99116.Google Scholar
Sokal, R.R., and Rohlf, F.J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd ed. W.H. Freeman and Company, San Francisco, California.Google Scholar
SPSS Inc. 2004. SPSS®. Version 13.0 for Windows® Graduate Student Version. SPSS Inc., Chicago.Google Scholar
Struble, G.R. 1961. Monterey pine Ips. United States Department of Agriculture Forest Service Forest Pest Leaflet 56.Google Scholar
Thomas, J.B. 1961. The life history of Ips pini (Say) (Coleoptera: Scolytidae). The Canadian Entomologist, 93: 384390.Google Scholar
Trimble, F.M. 1924. Life history and habits of two Pacific coast bark beetles. Annals of the Entomological Society of America, 17: 382391.Google Scholar
Trudgill, D.L., Honek, A., Li, D., and Van Straalen, N.M. 2005. Thermal time — concepts and utility. Annals of Applied Biology, 146: 114.Google Scholar
Wagner, T.L., Wu, H.-I., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N. 1984. Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America, 77: 208225.Google Scholar
West, S.A., Shuker, D.M., and Sheldon, B.C. 2005. Sex-ratio adjustment when relatives interact: a test of constraints on adaptation. Evolution, 59: 12111228.Google Scholar
Whitney, H.S. 1971. Association of Dendroctonus ponderosae (Coleoptera: Scolytidae) with blue stain fungi and yeasts during brood development in lodge-pole pine. The Canadian Entomologist, 103: 14951503.Google Scholar
Wood, S.L. (Editor). 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae): a taxonomic monograph. Brigham Young University, Provo, Utah.Google Scholar