Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T00:55:43.426Z Has data issue: false hasContentIssue false

Aspects of Insect Vision

Published online by Cambridge University Press:  31 May 2012

Brian Hocking
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta

Abstract

The functional morphology of the insect compound eye is reviewed with special reference to its surface and volume relationships with the rest of the head and its evolutionary development. Measurements of the more important parameters of the eyes of 28 species representing 14 major orders are given and interpreted in relation to this review. Recent histological and biophysical work on insect vision is also reviewed and some conclusions, especially those concerning the limit of sensitivity in the ultra-violet, are shown to be consistent with current theories of the early history of the oceans, the atmosphere, and of life.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

SirAiry, G. B. 1834. On the diffraction of an object glass with circular aperture. Proc. Camb. phil. Soc., November.Google Scholar
Barlow, H. B. 1952. The size of ommatidia in apposition eyes. J. exp. Biol. 29: 667674.Google Scholar
Bertholf, L. M. 1931. The distribution of stimulative efficiency in the ultra-violet spectrum for the honeybee. J. agric. Res. 43: 703713.Google Scholar
von Buddenbrock, W. 1935. Die Physiologic des Facettenauges. Biol. Rev. 10: 283316.Google Scholar
Burkhardt, D. 1962. Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16: 86109. Camb. Univ. Press.Google Scholar
Burtt, E. T., and Catton, W. T.. 1954. Visual perception of movement in the locust. J. Physiol. 125: 566580.Google Scholar
Burtt, E. T., and Catton, W. T.. 1960 (1962). Is the mosaic theory of insect vision true? Verh. XI int. Kongr. Ent., Vienna 1: 670673.Google Scholar
Burtt, E. T., and Catton, W. T.. 1962a. A diffraction theory of insect vision. I. An experimental investigation of visual acuity and image formation in the compound eyes of three species of insects. Proc. roy. Soc. (B) 157: 5382.Google Scholar
Burtt, E. T., and Catton, W. T.. 1962b. Resolving power of the compound eye. Symp. Soc. exp. Biol. 16: 7285. Camb. Univ. Press.Google Scholar
Calvin, M. 1962. Communication: from molecules to Mars. Amer. Inst. biol. Sci. Bull. 2944.Google Scholar
Crozier, W. J., and Wolf, E. T.. 1943a. Theory and measurement of visual mechanisms. X. Modifications of the flicker response contour, and the significance of the avian pecten. J. gen. Physiol. 27: 287313.Google Scholar
Crozier, W. J., and Wolf, E.. 1943b. Flicker response contours for the sparrow, and the theory of the avian pecten. J. gen. Physiol. 27: 215324.Google Scholar
Dice, L. R. 1945. Minimum intensities of illumination under which owls can find dead prey by sight. Amer. Nat. 79: 385416.Google Scholar
Eguchi, E. 1962. The fine structure of the eccentric retinula cell in the insect compound eye. J. Ultrastructure Res. 7: 328338.Google Scholar
Eltringham, H. 1933. The senses of insects. Methuen & Co., London.Google Scholar
Exner, S. 1891. Die Physiologie der Facettenaugen von Krebsen und Insekten. Leipzig and Vienna.Google Scholar
Fowle, F. E. 1934. Smithsonian Physical Tables. 8th Edition. pp. 389392. Smithsonian Institution, Washington.Google Scholar
von Frisch, K. 1948. Gelöste und ungelöste Rätsel der Bienensprache. Naturw. 35: 3843.Google Scholar
Groth, W. E., and Weyssenhoff, H. v.. 1960. Photochemical formation of organic compounds from mixtures of simple gases. Planetary Space Sci. 2: 79.Google Scholar
Goldsmith, T. H. 1958. On the visual system of the bee (Apis mellifera). Ann. N.Y. Acad. Sci. 74: 223229.Google Scholar
Goldsmith, T. H. 1960. The nature of the retinal action potential, and the spectral sensitivities of ultraviolet and green receptor systems of the compound eye of the worker honeybee. J. gen. Physiol. 43: 775800.Google Scholar
Goldsmith, T. H., and Philpott, D. E.. 1958. The microstructure of the compound eyes of insects. J. biophys. biochem. Cytol. 3: 429440.Google Scholar
Haldane, J. B. S. 1929. The origin of life. Rationalist Annual, London.Google Scholar
Hartline, H. K., Wagner, H. G., and Ratliff, F.. 1956. Inhibition in the eye of Limulus. J. gen. Physiol. 39: 651673.Google Scholar
Hecht, S., and Wolf, E.. 1929. The visual acuity of the honeybee. J. gen. Physiol. 7: 727760.Google Scholar
Hocking, B., and Mitchell, B. L.. 1961. Owl vision. Ibis 103a: 284288.Google Scholar
Holland, H. D. 1961. On the chemical evolution of the earth's atmosphere. J. geophys. Res. 66: 2536.Google Scholar
Holland, H. D. 1962. Model for the evolution of the earth's atmosphere, pp. 447477. In Engel, A. E. J., James, H. L. and Leonard, B. F. [ed.], Petrologic Studies: A volume to honour A. F. Buddington. Geological Society of America.Google Scholar
Ilse, D. 1949. Colour discrimination in the dronefly, Eristalis tenax. Nature, Lond. 163: 255256.Google Scholar
Imms, A. D. 1934. A general text-book of entomology, 3rd Edition. Methuen, London.Google Scholar
de Jong, H. G. B. 1936. La coacervation et son importance en biologie, 2 vols. Actualités Scientifiques et Industrielles, Paris.Google Scholar
Kühn, A. 1927. Über den Farbensinn der Bienen. Z. vergl. Physiol. 5: 762800.Google Scholar
Kuiper, J. W. 1962. The optics of the compound eye. Symp. Soc. exp. Biol. 16: 5871. Camb. Univ. Press.Google Scholar
Mazokhin-Porshnyakov, G. A. 1962. Rol'zneniya v zhizni chlenistonogoikh. [The role of vision in the life of arthropods.] Voprosy ekologii [Problems of Ecology], Moscow 7: 105106.Google Scholar
Menner, E. 1938. Function of the avian pecten. Zool. Jb., Abt. Allg. 58: 481538.Google Scholar
Müller, J. 1826. Zur vergleichenden Physiologie des Gesichtsinnes. Cnobloch, Leipzig.Google Scholar
Oparin, A. I. 1938. The origin of life. New York.Google Scholar
Polyak, S. 1957. The vertebrate visual system. University of Chicago Press.Google Scholar
Prosser, C. L., and Brown, F. A. Jr., 1961. Comparative animal physiology., 2nd Edition. W. B. Saunders Company, Philadelphia.Google Scholar
Rankama, K. 1955. Geologic evidence of chemical composition of the precambrian atmosphere. Geol. Soc. Amer. Special paper 62: 651664.Google Scholar
Rogers, G. L. 1962. A diffraction theory of insect vision. II. Theory and experiments with a simple model eye. Proc. roy. Soc. (B) 157: 8398.Google Scholar
Rubey, W. W. 1955. Development of the hydrosphere and atmosphere, with special reference to probable composition of the early atmosphere. Geol. Soc. Amer. Special paper 62: 631650.Google Scholar
Sagan, C. 1957. Radiation and the origin of the gene. Evolution 11: 4055.CrossRefGoogle Scholar
Sato, S., Kato, M., and Toriumi, M.. 1957. Structural changes of the compound eye of Culex pipiens var. pallens Coquillet in the process to dark adaptation. Sci. Rep. Tohoku Univ., 4th Ser.: Biology 23: 91100.Google Scholar
Sotavalta, O., Tuurala, O., and Oura, A.. 1962. On the structure and photomechanical reactions of the compound eyes of craneflies (Tipulidae, Limnobiidae). Ann. Acad. Sci. Fenn. A. IV, 62: 514.Google Scholar
Tischler, W. 1936. Ein Beitrag zum Formensehen der Insekten. Zool. Jb., Physiol. 57: 157202.Google Scholar
Urey, H. C. 1951. The origin and development of the earth and other terrestrial planets. Geochimica et Cosmochimica Acta 1: 209277.Google Scholar
Urey, H. C. 1952. On the early chemical history of the earth and the origin of life. Proc. nat. Acad. Sci., Wash. 38: 351363.Google Scholar
Walther, J. B., and Dodt, E.. 1957. Elektrophysiologische Untersuchungen über die Ultraviolettempfindlichkeit von Insektenaugcn. Experientia 13: 333334.Google Scholar
Waterman, T. H. 1954. Directional sensitivity of single ommatidia in the compound eye of Limulus. Proc. nat. Acad. Sci. Wash. 40: 252257.Google Scholar
Wolf, E., and Zerrahn-Wolf, G.. 1937. Flicker and the reactions of bees to flowers. J. gen. Physiol. 20: 511518.Google Scholar