Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 23
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Graystock, Peter Blane, Edward J. McFrederick, Quinn S. Goulson, Dave and Hughes, William O.H. 2016. Do managed bees drive parasite spread and emergence in wild bees?. International Journal for Parasitology: Parasites and Wildlife, Vol. 5, Issue. 1, p. 64.

    Antignus, Yehezkel 2014. Control of Plant Virus Diseases - Seed-Propagated Crops.

    Graystock, Peter Goulson, Dave and Hughes, William O.H. 2014. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ, Vol. 2, p. e522.

    Lamnatou, Chr. and Chemisana, D. 2013. Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR- and UV-blocking materials. Renewable and Sustainable Energy Reviews, Vol. 18, p. 271.

    Maebe, Kevin Meeus, Ivan and Smagghe, Guy 2013. Recruitment to forage of bumblebees in artificial low light is less impaired in light sensitive colonies, and not only determined by external morphological parameters. Journal of Insect Physiology, Vol. 59, Issue. 9, p. 913.

    Park, Hong-Hyun Kim, Jeong Jun Kim, Kwang-Ho and Lee, Sang-Guei 2013. Dissemination of Bacillus Subtilis by using Bee-vectoring Technology in Cherry Tomato Greenhouses. Korean journal of applied entomology, Vol. 52, Issue. 4, p. 357.

    Whitehorn, Penelope R Tinsley, Matthew C Brown, Mark J F and Goulson, Dave 2013. Investigating the impact of deploying commercialBombus terrestris forcrop pollination on pathogen dynamics in wild bumble bees. Journal of Apicultural Research, Vol. 52, Issue. 3, p. 149.

    Morse, Andrew Kevan, Peter Shipp, Les Khosla, Shalin and McGarvey, Brian 2012. The Impact of Greenhouse Tomato (Solanales: Solanaceae) Floral Volatiles on Bumble Bee (Hymenoptera: Apidae) Pollination. Environmental Entomology, Vol. 41, Issue. 4, p. 855.

    Szabo, Nora D. Colla, Sheila R. Wagner, David L. Gall, Lawrence F. and Kerr, Jeremy T. 2012. Do pathogen spillover, pesticide use, or habitat loss explain recent North American bumblebee declines?. Conservation Letters, Vol. 5, Issue. 3, p. 232.

    Tsormpatsidis, E. Ordidge, M. Henbest, R.G.C. Wagstaffe, A. Battey, N.H. and Hadley, P. 2011. Harvesting fruit of equivalent chronological age and fruit position shows individual effects of UV radiation on aspects of the strawberry ripening process. Environmental and Experimental Botany, Vol. 74, p. 178.

    Dafni, Amots Kevan, Peter Gross, Caroline L. and Goka, Koichi 2010. Bombus terrestris, pollinator, invasive and pest: An assessment of problems associated with its widespread introductions for commercial purposes. Applied Entomology and Zoology, Vol. 45, Issue. 1, p. 101.

    Kevan, P. G. Cooper, E. Morse, A. Kapongo, J. P. Shipp, L. and Khosla, S. 2009. Measuring foraging activity in bumblebee nests: a simple nest-entrance trip recorder. Journal of Applied Entomology, Vol. 133, Issue. 3, p. 222.

    Kapongo, J.P. Shipp, L. Kevan, P. and Sutton, J.C. 2008. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control, Vol. 46, Issue. 3, p. 508.

    Rao, Sujaya and Stephen, William P. 2007. Bombus (Bombus) occidentalis (Hymenoptera: Apiformes): In decline or recovery. The Pan-Pacific Entomologist, Vol. 83, Issue. 4, p. 360.

    Weintraub, Phyllis G 2007. Integrated control of pests in tropical and subtropical sweet pepper production. Pest Management Science, Vol. 63, Issue. 8, p. 753.

    Chiel, Elad Messika, Yoel Steinberg, Shimon and Antignus, Yeheskel 2006. The Effect of UV-absorbing Plastic Sheet on the Attraction and Host Location Ability of Three Parasitoids: Aphidius colemani, Diglyphus isaea and Eretmocerus mundus. Biocontrol, Vol. 51, Issue. 1, p. 65.

    Colla, Sheila R. Otterstatter, Michael C. Gegear, Robert J. and Thomson, James D. 2006. Plight of the bumble bee: Pathogen spillover from commercial to wild populations. Biological Conservation, Vol. 129, Issue. 4, p. 461.

    INGS, T. C. WARD, N. L. and CHITTKA, L. 2006. Can commercially imported bumble bees out-compete their native conspecifics?. Journal of Applied Ecology, Vol. 43, Issue. 5, p. 940.

    Roldán Serrano, Ana and Guerra-Sanz, José M. 2006. Quality fruit improvement in sweet pepper culture by bumblebee pollination. Scientia Horticulturae, Vol. 110, Issue. 2, p. 160.

    Campbell, Jennifer M Dahn, Douglas C and Ryan, Daniel A J 2005. Capacitance-based sensor for monitoring bees passing through a tunnel. Measurement Science and Technology, Vol. 16, Issue. 12, p. 2503.


Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses

  • L.A. Morandin (a1), T.M. Laverty (a1), P.G. Kevan (a2), S. Khosla (a3) and L. Shipp (a4)
  • DOI:
  • Published online: 01 May 2012

Activity of bumble bees, Bombus impatiens Cresson, was examined in commercial tomato, Lycopersicon esculentum Mill. (Solanaceae), greenhouses in relation to greenhouse covering type, solar radiation, greenhouse temperature and humidity. Bumble bee activity was measured by photodiode monitors inserted into the entrance of the colonies. Colony sizes were monitored as an indicator of bee loss through gutter ventilation systems in relation to covering. Activity monitors were found to be a good predictor of actual bumble bee entrances and exits (r2 = 0.85). Bumble bee activity was 94.0% greater under the ultravioltet (UV)-transmitting covering than under ones that transmitted less UV light. No relationship was found between bee activity and the amount of solar radiation or internal greenhouse humidity. Bee activity was weakly positively correlated with internal greenhouse temperature (r2 = 0.18). Bee activity was not different during three periods of the day: morning, midday, and evening. The mean ± SE colony size under the UV-transmitting covering was 86.0 ± 2 bees per colony after 10 days within the greenhouses, compared with 36.4 ± 5.8 bees per colony under the other three types of covering. Our results suggest that bee activity is greatest and bee loss through gutter ventilation systems lowest in greenhouses made with coverings that transmit high levels of UV light.


L’activité des bourdons, Bombus impatiens Cresson, a été étudiée dans des serres de culture commerciale de tomates, Lycopersicon esculentum Mill. (Solanaceae), en fonction du type de couverture de la serre, de la radiation solaire, des conditions de température et d’humidité. L’activité des bourdons a été mesurée au moyen de sondes à photodiodes insérées à l’entrée des colonies. Les tailles des colonies servaient d’indicateurs des pertes de bourdons par le système de ventilation des gouttières en relation avec la couverture. Les sondes d’activité se sont avérées de bons outils pour prédire les entrées et sorties réelles des bourdons (r2 = 0,85). L’activité des bourdons était de 94,0% plus importante sous les couvertures qui laissent passer l’ultraviolet (UV) que sous les couvertures qui transmettent moins bien la lumière UV. Nous n’avons pas trouvé de relation entre l’activité des bourdons et la quantité de radiation solaire ou d’humidité à l’intérieur des serres. L’activité des bourdons était en faible corrélation positive avec la température à l’intérieur des serres (r2 = 0,18). L’activité ne différait pas au cours des périodes de la journée : matin, midi et soir. La taille moyenne ± écart type des colonies sous la couverture qui laisse passer l’ultraviolet a été estimée à 86,0 ± 2 individus par colonie après 10 jours en serre, comparativement à 36,4 ± 5,8 individus par colonie sous les trois autres types de couverture. Nos résultats indiquent que l’activité des bourdons est maximale et la perte d’individus par le système de ventilation des gouttières, minimale dans les serres ou la couverture laisse passer l’ultraviolet.

[Traduit par la Rédaction]

Corresponding author
1 Author to whom all correspondence should be addressed (E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W.S. Armbruster , K.D. McCormick 1990. Diel foraging patterns of male euglossine bees: ecological causes and evolutionary response by plants. Biotropica 22: 160–71

S.A. Corbet , R.A. Fussell , A. Fraser , C. Gunson , A. Savage , K. Smith 1993. Temperature and the pollinating activity of social bees. Ecological Entomology 18: 1730

M.H. Dogterom , J.A. Matteoni , R.C. Plowright 1998. Pollination of greenhouse tomatoes by the North American Bombus vosnesenskii (Hymentoptera: Apidae). Journal of Economic Entomology 91: 71–5

P.G. Kevan 1979. Vegetation and floral colors revealed by ultraviolet light: interpretational difficulties for functional significance. American Journal of Botany 66: 749–51

P.G. Kevan , W.G.K. Backhaus 1998. Color vision: ecology and evolution in making the best of the photic environment. pp 163–83 inW.G.K. Backhaus , R. Kliegl , J.S. Werner (Eds), Color vision: perspectives from different disciplines. New York: Walter de Gruyter

S.B. Laughlin 1976. The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. Journal of Comparative Physiology 111: 221–47

R. Menzel , U. Greggers 1985. Natural phototaxis and its relationship to colour vision in honey bees. Journal of Comparative Physiology 141: 389–93

L.A. Morandin , T.M. Laverty , P.G. Kevan 2001 a. Effect of bumble bee (Hymenoptera: Apidae) pollination intensity on the quality of greenhouse tomatoes. Journal of Economic Entomology 94: 172–9

D. Peitsch , A. Fietz , H. Hertel , J. De Souza , D.F. Ventura , R. Menzel 1992. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A 170: 2340

E. Pressman , R. Shaked , K. Rosenfeld , A. Hefetz 1998. A comparative study of the efficiency of bumble bees and an electric bee in pollinating unheated greenhouse tomatoes. Journal of Horticultural Science & Biotechnology 74: 101–4

K. von Frisch 1965. Tanzsprache und Orientierung der Bienen. Berlin, Heidelberg, and New York, New York: Springer

C.B. Williams 1940. The analysis of four years captures of insects in a light trap. Part 2. The effect of weather conditions on insect activity; and the estimation and forecasting of changes in the insect population. Transactions of the Royal Entomological Society of London 90: 227306

C.B. Williams 1961. Studies in the effect of weather conditions on the activity and abundance of insect populations. Philosophical Transactions of the Royal Society of London B Biological Sciences 244: 331–78

C.B. Williams , M.F.H. Osman 1960. A new approach to the problem of the optimum temperature for insect activity. Journal of Animal Ecology 29: 187–90

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *