Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T16:32:08.585Z Has data issue: false hasContentIssue false

Characterisation of attacks made by the mountain pine beetle (Coleoptera: Curculionidae) during its endemic population phase

Published online by Cambridge University Press:  18 March 2014

K.P. Bleiker*
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
M.R. O'Brien
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
G.D. Smith
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
A.L. Carroll
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
*
2Corresponding author: (e-mail: katherine.bleiker@nrcan.gc.ca).

Abstract

Mountain pine beetle (MPB) Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) attacks and overwhelms the defences of vigorous trees during outbreaks by attacking en masse. Low or endemic populations are regulated by host resistance and restricted to colonising weakened trees, where there is a potential trade off between tree defences and habitat quality. Mountain pine beetle populations are typically in the endemic population phase, but MPB attack behaviour and brood productivity in this phase are poorly understood. We located attacks made by beetles from endemic populations in north-central Alberta, Canada and examined galleries constructed on these trees. The distribution of gallery starts on trees was clustered relative to height on the tree, but not related to aspect on the tree bole. We found no Allee effect associated with mate location as over 99% of galleries were constructed by mated females. Productivity was generally low and brood development rarely reached the pupal stage, with one exception that suggests that endemic populations are capable of rapid increase in certain hosts. Egg galleries constructed by unmated females differed in morphology from galleries created by mated females. To understand the dynamics of this eruptive species, we need to identify the conditions under which endemic populations can persist and periodically increase to densities that result in coordinated mass attacks on healthy trees and lead to outbreaks.

Résumé

Le dendroctone du pin ponderosa (DPP) Dendroctonus ponderosae Hopkins (Coleoptera : Curculionidae) attaque et écrase les défenses d'arbres vigoureux durant les infestations grâce à des attaques massives. Les populations faibles ou endémiques sont régularisées par la résistance de l'hôte et ne peuvent coloniser que les arbres affaiblis, où il y a un compromis potentiel entre les mécanismes de défense des arbres et la qualité de l'habitat. Les populations de DPP sont habituellement dans la phase de population endémique, mais le comportement d'attaque du DPP et la productivité du couvain dans cette phase sont peu compris. Nous avons trouvé des attaques faites par des populations endémiques de DPP dans le Centre-Nord de l'Alberta, Canada et avons examiné les galeries construites sur ces arbres. La distribution du point de départ des galeries sur les arbres était concentrée par rapport à la hauteur sur l'arbre, mais non associée à l'orientation sur le fût de l'arbre. Nous n'avons remarqué aucun effet d'Allee associé à l'emplacement du partenaire d'accouplement puisque plus de 99% des galeries étaient construites par des femelles accouplées. La productivité était généralement faible et le développement du couvain a rarement atteint le stade nymphal, avec une exception qui laisse entendre que les populations endémiques sont capables d'accroissement rapide dans certains hôtes. Les galeries de ponte construites par les femelles non accouplées présentaient une morphologie différente de celles créées par les femelles accouplées. Pour comprendre la dynamique de cette espèce éruptive, nous devons déterminer les conditions dans lesquelles les populations endémiques peuvent survivre et s'accroître périodiquement jusqu’à des densités qui entraînent des attaques massives coordonnées sur des arbres sains et mènent à des infestations.

Type
Behaviour & Ecology
Copyright
Copyright © Her Majesty the Queen in Right of Canada, Natural Resources Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Deepa Pureswaran

References

Amman, G.D. 1972. Mountain pine beetle brood production in relation to thickness of lodgepole pine phloem. Journal of Economic Entomology, 65: 138140.Google Scholar
Amman, G.D. 1978. Biology, ecology, and causes of outbreaks of the mountain pine beetle in lodgepole pine forests. In Theory and practice of mountain pine beetle management in lodgepole pine forests, Symposium proceedings, April 25–27, 1978, Pullman Washington. Edited by A. Berryman, G.D. Amman, and R.W. Stark. University of Idaho, Forest, Wildlife and Range Experiment Station, Moscow, Idaho, United States of America. Pp. 3953.Google Scholar
Amman, G.D. 1980. Incidence of mountain pine beetle abandoned galleries in lodgepole pine. Research Note INT-284. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Amman, G.D. 1984. Mountain pine beetle (Coleoptera: Scolytidae) mortality in three types of infestations. Environmental Entomology, 13: 184191.CrossRefGoogle Scholar
Bartos, D.L.Schmitz, R.F. 1998. Characteristics of endemic-level mountain pine beetle populations in south-central Wyoming. Research Paper RMRS-RP-13. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, Utah, United States of America.Google Scholar
Beal, J.A. 1943. Relation between tree growth and outbreaks of the Black Hills beetle. Journal of Forestry, 41: 359366.Google Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience, 22: 598602.Google Scholar
Berryman, A.A. 1976. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Environmental Entomology, 5: 12251233.Google Scholar
Bleiker, K.P., Carroll, A.L., Smith, G.D. 2011. Mountain pine beetle range expansion: assessing the threat to Canada's boreal forest by evaluating the endemic niche. Natural Resources Canada, Ottawa, Canada.Google Scholar
Bleiker, K.P., Heron, R.J., Braithwaite, E.C., Smith, G.D. 2013. Preemergence mating in the mass-attacking bark beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae). The Canadian Entomologist, 145: 1219. doi:10.4039/tce.2012.102.CrossRefGoogle Scholar
Bleiker, K.P.Six, D.L. 2007. Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environmental Entomology, 36: 13841396.Google Scholar
Bleiker, K.P.Six, D.L. 2009. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microbial Ecology, 57: 191202. doi:10.1007/s00248-008-9395-6.Google Scholar
Boone, C.K., Aukema, B.H., Bohlmann, J., Carroll, A.L., Raffa, K.F. 2011. Efficacy of tree defense physiology varies with bark beetlepopulation density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 41: 11741188.CrossRefGoogle Scholar
Bright, D.E. 1976. The bark beetles of Canada and Alaska. Coleoptera: Scolytidae. Publication 1576. Canada Department of Agriculture, Biosystematic Research Institute, Research Branch, Ottawa, Ontario, Canada.Google Scholar
Carroll, A.L., Aukema, B.H., Raffa, K.F., Smith, G.D., Lindgren, B.S. 2006. Mountain pine beetle outbreak development: the endemic – incipient transition. Natural Resources Canada, Canadian Forest Service, Victoria, British Columbia, Canada.Google Scholar
Coulson, R.N., Flamm, R.O., Pulley, P.E., Payne, T.L., Rykiel, E.J., Wagner, T.L. 1986. Response of the southern pine bark beetle guild (Coleoptera Scolytidae) to host disturbance. Environmental Entomology, 15: 850858.Google Scholar
Craighead, F.C. 1925. Bark beetle epidemics and rainfall deficiency. Journal of Economic Entomology, 18: 577586.Google Scholar
Cudmore, T.J., Björklund, N., Carroll, A.L., Lindgren, B.S. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher reproductive success in naïve host tree populations. Journal of Applied Ecology, 47: 10361043.Google Scholar
Flamm, R.O., Pulley, P.E., Coulson, R.N. 1993. Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae). Environmental Entomology, 22: 6270.CrossRefGoogle Scholar
Hurlbert, S.H. 1990. Spatial distribution of the montane unicorn. Oikos, 58: 257271.Google Scholar
Jackson, P.L., Straussfogel, D., Lindgren, B.S., Mitchell, S., Murphy, B. 2008. Radar observation and aerial capture of mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae) in flight above the forest canopy. Canadian Journal of Forest Research, 38: 23132327.Google Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. The Canadian Entomologist, 90: 582584.Google Scholar
Miller, D.R.Borden, J.H. 2000. Dose-dependent and species-specific responses of pine bark beetles (Coleoptera: Scolytidae) to monoterpenes in association with pheromones. The Canadian Entomologist, 132: 183195.Google Scholar
Morisita, M. 1962. I σ-Index, a measure of dispersion of individuals. Researches on Population Ecology, 4: 17. doi:10.1007/BF02533903.CrossRefGoogle Scholar
Paine, T.D., Raffa, K.F., Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42: 179206.Google Scholar
Raffa, K.F., Aukema, B.H., Bentz, B.J., Carroll, A.L., Hicke, J.A., Turner, M.G., et al. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience, 58: 501517.Google Scholar
Raffa, K.F.Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs, 53: 2749.Google Scholar
Rankin, L.J.Borden, J.H. 1991. Competitive interactions between the mountain pine beetle and the pine engraver in lodgepole pine. Canadian Journal of Forest Research, 21: 10291036.CrossRefGoogle Scholar
Reid, R.W. 1958. The behaviour of the mountain pine beetle, Dendroctonus ponderosae Hopk., during mating, egg laying, and gallery construction. The Canadian Entomologist, 90: 505509.Google Scholar
Reid, R.W. 1961. Moisture changes in lodgepole pine before and after attack by mountain pine beetle. The Forestry Chronicle, 37: 368375.CrossRefGoogle Scholar
Reid, R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay Region of British Columbia II. Behaviour in the host, fecundity, and internal changes in the female. The Canadian Entomologist, 94: 605613.CrossRefGoogle Scholar
Reid, R.W. 1963. Biology of the mountain pine beetle, Dendroctonus monticolae Hopkins, in the East Kootenay Region of British Columbia III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. The Canadian Entomologist, 95: 225238.CrossRefGoogle Scholar
Rudinsky, J.A., Morgan, M.E., Libbey, L.M., Putnam, T.B. 1974. Antiaggregative-rivalry pheromone of the mountain pine beetle, and a new arrestant of the southern pine beetle. Environmental Entomology, 3: 9098.Google Scholar
Ryker, L.C.Rudinsky, J.A. 1976. Sound production in Scolytidae: aggressive and mating behavior of the mountain pine beetle. Annals of the Entomological Society of America, 69: 677680.Google Scholar
Safranyik, L. 1989. Mountain pine beetle: biology overview. In Symposium on the management of lodgepole pine to minimize losses to the mountain pine beetle. United States Department of Agriculture Forest Service, Intermountian Forest and Range Experiment Station, Kalispell, Montana, United States of America. Pp. 913.Google Scholar
Safranyik, L.Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of its biology, management and impacts on lodgepole pine. Edited by L. Safranyik and B. Wilson. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada. Pp. 366.Google Scholar
Safranyik, L., Carroll, A.L., Régnière, J., Langor, D.W., Riel, W.G., Peter, B., et al. 2010. Potential for range expansion of mountain pine beetle into the boreal forest of North America. The Canadian Entomologist, 142: 415442. doi:10.4039/n08-CPA01.Google Scholar
Safranyik, L.Vithayasai, C. 1971. Some characteristics of the spatial arrangement of attacks by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera, Scolytidae), on lodgepole pine. The Canadian Entomologist, 103: 16071625.Google Scholar
Shepherd, R.F. 1966. Factors influencing the orientation and rates of activity of Dendroctonus ponderosae Hopkins (Coletoptera: Scolytidae). The Canadian Entomologist, 98: 507518.Google Scholar
Smith, G.D., Carroll, A.L., Lindgren, B.S. 2011. Facilitation in bark beetles: endemic mountain pine beetle gets a helping hand. Agricultural and Forest Entomology, 13: 3743. doi:10.1111/j.1461-9563.2010.00499.x.Google Scholar
Tkacz, B.M.Schmitz, R.F. 1986. Association of an endemic mountain pine beetle population with lodgepole pine infected by armillaria root disease in Utah. Research Note INT-353. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Wallin, K.F.Raffa, K.F. 2004. Feedback between individual host selection behavior and population dynamics in an eruptive herbivore. Ecological Monographs, 74: 101116.Google Scholar
Walton, A. 2012. Provincial-level projection of the current mountain pine beetle outbreak: update of the infestation projection based on the Provincial aerial overview surveys of forest health conducted from 1999 through 2011 and the BCMPB model (year 9). British Columbia Ministry of Forests, Lands and Natural Resources Operations, Victoria, British Columbia, Canada.Google Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Brigham Young University, Provo, Utah, United States of America.Google Scholar
Zar, J.H. 1996. Biostatistical analysis. Simon & Schuster, Upper Saddle River, New Jersey, United States of America.Google Scholar