Skip to main content Accessibility help
×
Home

ENERGY ACQUISITION AND ALLOCATION IN PLANTS AND INSECTS: A HYPOTHESIS FOR THE POSSIBLE ROLE OF HORMONES IN INSECT FEEDING PATTERNS

  • A.P. Gutierrez (a1), F. Schulthess (a2), L.T. Wilson (a3), A.M. Villacorta (a4), C.K. Ellis (a1) and J.U. Baumgaertner (a5)...

Abstract

A distributed delay age structure model is presented for plants and insects that describes the dynamics of per capita energy (dry matter) acquisition and allocation patterns, and the within-organism subunit (e.g. leaves, fruit, ova) number dynamics that occur during growth, reproduction, and development. Four species of plants (common bean, cassava, cotton, and tomato) and two species of insects (pea aphid and a ladybird beetle) are modeled. A common acquisition (i.e. functional response) submodel is used to estimate the daily photosynthetic rates in plants and consumption rates in pea aphid and the ladybird beetle. The focus of this work is to capture the essence of the common attributes between trophic levels across this wide range of taxa. The models are compared with field or laboratory data. A hypothesis is proposed for the observed patterns of reproduction in pea aphid and in a ladybird beetle.

On a construit un modèle démographique avec distribution de délai applicable à des plantes et des insectes. Le modèle décrit la dynamique de l’appropriation et de la répartition de l’énergie (matière sèche) per capita, et la dynamique des nombres des sous-unités intra-organisme (ex. feuilles, fruits, oeufs). On a ainsi modélisé quatre sortes de plantes (fève, cassava, colon et tomate) et deux espèces d’insectes (puceron du pois et coccinelle). On utilise un sous-modèle commun d’acquisition (résponse fonctionnelle) pour estimer les vitesses journalières de photosynthèse des plantes et d’alimentation du puceron et de la coccinelle. Le but de ce travail est d’extraire les caractéristiques essentielles communes aux niveaux trophiques occupés par ces divers taxons. Les modèles sont comparés avec des données de terrain et de laboratoire. On propose une hypothèse pour expliquer les profils observés de reproduction du puceron du pois et de la coccinelle.

Copyright

References

Hide All
Bellows, T.S. Jr., 1982. Simulation models for laboratory populations of Callosobruchus chinensis and C. maculatus. J. Anim. Ecol. 51: 597623.
Bookman, S.S. 1983. Costs and benefits of flower abscission and fruit abortion in Asclepias speciosa. Ecology 64: 264273.
Chapman, R.F. 1982. The insects—structure and function. Harvard University Press, Cambridge, MA. 919 pp.
Cuff, W.R., and Hardman, J.M.. 1980. A development of the Leslie Matrix formulation for restructuring and extending an ecosystem model: the infestation of stored wheat by Sitophilus oryzae. Ecol. Modelling 9: 281305.
Curry, G.L., Feldman, R.M., and Smith, K.C.. 1978. A stochastic model of a temperature-dependent population. J. Theor. Biol. 13: 197204.
De Angelis, D.L., Goldstein, R.A., and O'Neill, R.V.. 1975. A model for trophic interaction. Ecology 56: 881892.
Evans, L.T. 1975. Crop physiology — some case histories. Cambridge University Press, Cambridge, MA. 374 pp.
Fisher, R.A. 1930. The genetical theory of natural selection. Clarendon, Oxford.
Frazer, B.D., and Gilbert, N.. 1976. Coccinellids and aphids: a quantitative study of the impact of adult lady birds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. ent. Soc. B.C. 73: 3356.
Gilbert, N., Gutierrez, A.P., Frazer, B.D., and Jones, R.E.. 1976. Ecological relationships. Freeman and Co., New York.
Gutierrez, A.P., and Baumgaertner, J.U.. 1984 a. Multitrophic level models of predator–prey-energetics: I. Age specific energetics models—pea aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphidiae) as an example. Can. Ent. 116: 924932.
Gutierrez, A.P., and Baumgaertner, J.U.. 1984 b. Multitrophic level models of predator–prey energetics: II. A realistic model of plant–herbivore–parasitoid–predator interactions. Can. Ent. 116: 933949.
Gutierrez, A.P., Baumgaertner, J.U., and Hagen, K.S.. 1981. A conceptual model for growth, development and reproduction in the ladybird beetle, Hippodamia convergens (Coleoptera: Coccinellidae). Can. Ent. 113: 2133.
Gutierrez, A.P., Baumgaertner, J.U., and Summers, C.G.. 1984. Multitrophic level models of predator–prey energetics: III. A case study in an alfalfa ecosystem. Can. Ent. 116: 950963.
Gutierrez, A.P., Butler, G.D. Jr., Wang, Y., and Westphal, D.. 1977. The interaction of pink bollworm (Lepidoptera: Gelichiidae), cotton and weather: a detailed model. Can. Ent. 109: 14571468.
Gutierrez, A.P., Christensen, J.B., Merritt, C.M., Loew, W.B., Summers, C.G., and Cothran, W.R.. 1976. Alfalfa and the Egyptian alfalfa weevil (Coleoptera: Curculionidae). Can. Ent. 108: 635648.
Gutierrez, A.P., DeVay, J.E., Pullman, G.S., and Friebertshauser, G.E.. 1983. A model of verticillium wilt in relation to cotton growth and development. Phytopath. 75: 8995.
Gutierrez, A.P., Falcon, L.A., Loew, W., Leipzig, P.A., and van den Bosch, R.. 1975. An analysis of cotton production in California: a model for Acala cotton and the effects of defoliators on its yield. Environ. Ent. 4: 125136.
Gutierrez, A.P., Leigh, T.F., Wang, Y., and Cave, R.. 1977. An analysis of cotton production in California: Lygus hesperus (Heteroptera: Miridae) injury — an evaluation. Can. Ent. 109: 13751386.
Gutierrez, A.P., Pizzamiglio, M.A., Santos, W.J. Dos, Tennyson, R., and Villacorta, A.M.. 1984. A general distributed delay time varying life table plant population model: cotton (Gossypium hirsutum L.) growth and development as an example. Ecol. Modelling 26: 231249.
Gutierrez, A.P., and Regev, U.. 1983. The economics of fitness and adaptedness: the interaction of sylvan cotton (Gossypium hirsutum L.) and the boll weevil (Anthonomus grandis Boh.) — an example. Ecol. Gener. 4: 271287.
Gutierrez, A.P., and Wang, Y.H.. 1976. Applied population ecology: models for crop production and pest management. pp. 255280in Norton, G.A., and Holling, C.S. (Eds.), Pest Management, International Institute for Applied Systems Analysis Proc. Ser.
Hagen, K.S., and Sluss, R.R.. 1966. Quantity of aphids required for reproduction by Hippodamia spp. in the laboratory. pp. 47–59 in Hodek, I. (Ed.) Ecology of Aphidophagous Insects. Czechoslovak Acad. Sci., Prague.
Hardie, J., and Lees, A.D.. 1985. The induction of normal and teratoid viviparae by a juvenile hormone and kinoprene in two species of aphids. Physiol. Ent. 10: 6574.
Harper, J.L. 1979. Population biology of plants. Academic Press Inc., London. 891 pp.
Harper, J.L., and White, J.. 1974. Demography of plants. Annu. Rev. Syst. 5: 419463.
Holling, C.S. 1966. The functional response of invertebrate predators to prey density. Mem. ent. Soc. Can. 48. 86 pp.
Jones, J.W., Thompson, A.C., and Hesketh, D.J.. 1974. Analysis of SIMCOT: Nitrogen and growth. pp. 111116in Beltwide Cotton Prod. Res. Conf., Memphis.
Kvalseth, T.O. 1985. Cautionary note about R2. Am. Stat. Assoc. 39: 279285.
Law, J. 1983. A model for the dynamics of a plant population containing individuals classified by age and size. Ecology 64: 224230.
Leslie, P.H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183212.
Loomis, R.S., and Williams, W.A.. 1963. Maximum crop productivity: an estimate. Crop Sci. 3: 6772.
Mack, T.P., Bajusz, B.A., Nolan, E.S., and Smilowitz, Z.. 1981. Development of a temperature-mediated functional response equation. Environ. Ent. 10: 573579.
Mahon, J.D., Lowe, S.B., Hunt, L.A., and Thiagarajah, M.. 1977. Environmental effects on photosynthesis and transpiration in attached leaves of cassava (Manihot esculenta Crantz). Photosynthetica 11: 121130.
Manetsch, T.J. 1976. Time varying distributed delays and their use in aggregate models of large systems. IEEE Trans. Syst., Man and Cybern. 6: 547553.
May, R.M. 1982. Theoretical ecology. Sinauer Press, Sunderland, MA.
Noggle, G.R., and Fritz, G.J.. 1976. Introductory plant physiology. Prentice-Hall Inc., Englewood Cliffs, NJ. 675 pp.
Randolph, P.A., Randolph, J.C., and Barlow, C.A.. 1975. Age-specific energetics of the pea aphid. Acyrthosiphon pisum. Ecology 56: 357369.
Sinko, J.W., and Streifer, W.. 1967. A new model for age-structure of a population. Ecology 48: 910918.
Vansickle, J. 1977. Attrition in distributed delay models. IEEE Trans. Syst., Man Cybern. 7: 635638.
von Foerster, H. 1959. Some remarks on changing populations. pp. 382407in Stahlman, F. Jr. (Ed.), The Kinetics of Cellular Proliferation. Grune and Stratton, New York.
Wang, Y.H., and Gutierrez, A.P.. 1980. An assessment of the use of stability analyses in population ecology. J. Anim. Ecol. 49: 435452.
Wang, Y.H., Gutierrez, A.P., Oster, G., and Daxl, R.. 1977. A population model for cotton growth and development: coupling cotton-herbivore interactions. Can. Ent. 109: 13591374.
Ward, S.A., and Dixon, A.F.G.. 1982. Selective resorption of aphid embryos and habitat changes relative to life span. J. Anim. Ecol. 51: 859864.

Related content

Powered by UNSILO

ENERGY ACQUISITION AND ALLOCATION IN PLANTS AND INSECTS: A HYPOTHESIS FOR THE POSSIBLE ROLE OF HORMONES IN INSECT FEEDING PATTERNS

  • A.P. Gutierrez (a1), F. Schulthess (a2), L.T. Wilson (a3), A.M. Villacorta (a4), C.K. Ellis (a1) and J.U. Baumgaertner (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.