Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T12:20:55.167Z Has data issue: false hasContentIssue false

INDIVIDUAL VARIABILITY OF THE FLIGHT POTENTIAL OF IPS SEXDENTATUS BOERN. (COLEOPTERA: SCOLYTIDAE) IN RELATION TO DAY OF EMERGENCE, SEX, SIZE, AND LIPID CONTENT

Published online by Cambridge University Press:  31 May 2012

Hervé Jactel
Affiliation:
I.N.R.A., Laboratoire d'Entomologie Forestière, Station de Recherches forestières, Pierroton, 33610 Cestas, France

Abstract

Individual variability in the flight potential of Ips sexdentatus Boern. was investigated using flight mill experiments. Non-flyer status and flight durations were studied in relation to day of emergence, sex, pronotum width, dried body weight (after lipid ether extraction), and lipid content estimate. Lipid content estimation was determined in beetles reared on the same trees and under identical conditions as the flight test insects.The four flight-tested cohorts showed that approximately one-third were non-flyers. The distribution of individual flight durations was described by a log-normal curve. Consequently, the dispersal variability within the population could be fitted to a linear model on a log-probit scale. The concept of FD50 (flight duration 50), defined as the flight duration of 50% of a sample population, was used to describe population flight potential.There was no significant correlation between the individual flight duration and the day of emergence, sex, body size or weight, or lipid content estimate. A significant positive correlation was recorded between the different classes of flyer (i.e. non-, short, long, and very long flyers) and the average lipid content estimate. It was hypothesized that (1) a minimum threshold fuel supply was necessary to initiate the dispersal flight and (2) fuel supply could result in dispersal tendencies representing a specific response to habitat constraints.

Résumé

La variabilité individuelle du potentiel de vol de Ips sexdentatus Boern. est analysée au laboratoire en utilisant des manèges de vol. L’incapacité de vol et la durée de vol sont étudiées en fonction du jour d’émergence, du sexe, de la largeur du pronotum, du poids sec (après extraction des lipides à l’éther) et d’une estimation de la teneur en lipides des insectes.Environ un tiers des insectes testés sur manège se sont révélés incapables de voler. La distribution des durées de vol des individus d’une même population suit une loi log normale. Elle peut être décrite par un modèle linéaire en coordonnées log-probit. Le concept de DV50 (durée de vol 50), défini comme la durée de vol pouvant être accomplie par 50% de la population, est alors utilisé pour décrire le potentiel de vol de cette population.Aucune corrélation significative n’a pu être établie entre la durée de vol d’un individu et son jour d’émergence, son sexe, sa taille, son poids ou sa teneur en lipide. Regroupés en quatre classes de durée de vol (durée nulle, courte, longue et très longue), les scolytides présentent en moyenne des teneurs en lipides significativement différentes. Une quantité minimum de réserves énergétiques serait donc nécessaire pour initier le vol de dispersion et l’importance de ces réserves déterminerait l’ampleur du potentiel de déplacement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderbrant, O. 1988. Survival of parent and brood adult bark beetles, Ips typographus, in relation to size, lipid content and re-emergence or emergence day. Physiological Entomology 13: 121129.CrossRefGoogle Scholar
Botterweg, P.F. 1982. Dispersal and flight behaviour of the spruce bark beetle Ips typographus in relation to sex, size and fat content. Journal of Applied Entomology 94: 466489.Google Scholar
CIRAD. 1989. LD 50 Calculation Software, Version 4.0. Centre de Cooperation Internationale en Recherche Agronomique pour le Développement. BP 5035, 34032 Montpellier, France.Google Scholar
Clark, W.C. 1979. Special structure relationship in a forest insect system: Simulation models and analysis. Bulletin de la Société Entomologique Suisse 52: 235257.Google Scholar
Cockbain, A.J. 1961. Fuel utilization and duration of tethered flight in Aphis fabae Scop. Journal of Experimental Biology 38: 175180.CrossRefGoogle Scholar
Dingle, H. 1965. The relation between age and flight activity in the milkweed bug Oncopeltus. Journal of Experimental Biology 42: 269283.CrossRefGoogle Scholar
Forsse, E. 1989. Migration in bark beetles, with special reference to the spruce bark beetle Ips typographus. Ph.D. dissertation. Sveriges Lantbruksuniversitet, Uppsala.Google Scholar
Forsse, E., and Solbreck, C.. 1985. Migration in the bark beetle Ips typographus: Duration, timing and height of flight. Zeitschrift für angewandte Entomologie 100: 4757.CrossRefGoogle Scholar
Gara, R.I. 1963. Studies of the flight behaviour of Ips confusus in response to attractive material. Contribution Boyce Thompson Institute 22: 5166.Google Scholar
Gatehouse, A.G. 1986. Migration in the African Armyworm Spodoptera exempta: Genetic determination of migratory capacity and a new synthesis. pp. 128–144 in Danthanarayama, W. (Ed.), Insect Flight: Dispersal and Migration. Springer-Verlag. Berlin. Heidelberg. 289 pp.Google Scholar
Hagen, B.W., and Atkins, M.D.. 1975. Between generation variability in the fat content of Ips paraconfusus. Journal of Applied Entomology 79: 169172.Google Scholar
Jactel, H. 1991. Dispersal and flight behaviour of Ips sexdentatus (Coleoptera: Scolytidae) in pine forest. Annales des Sciences Forestières 48: 417428.CrossRefGoogle Scholar
Jactel, H., and Gaillard, J., 1991. A preliminary study of the dispersal potential of Ips sexdentatus (Boern) (Col.: Scolytidae) with an automatically recording flight mill. Journal of Applied Entomology 112: 138145.CrossRefGoogle Scholar
Jactel, H., and Lieutier, F.. 1987. Effects of attack density on fecundity of the Scots Pine Beetle Ips sexdentatus Boern. (Coleoptera: Scolytidae). Journal of Applied Entomology 104: 190204.CrossRefGoogle Scholar
Johnson, C.G. 1976. Lability of flight system: Context for functional adaptation, pp. 217–234 in Rainey, R.C. (Ed.). Insect Flight. Royal Entomological Society. Blackwell Scientific Publication. 287 pp.Google Scholar
Kinn, D.N. 1986. Studies of the Flight Capabilities of Dendroctonus frontalis and Ips calligraphus: Preliminary Findings using Tethered Beetles. USDA Forest Service. Southern Forest Experimental Station, Research Note SO–324: 3 pp.Google Scholar
Michel, R. 1971. Influence du groupement en essaim artificiel sur la tendance au vol du criquet Pélerin (Schistocerca gregaria Forsk.). Behaviour 39: 5872.CrossRefGoogle Scholar
Nilssen, A.C. 1978. Development of bark fauna in plantations of spruce (Picea abies L. Karst.) in North Norway. Astarte 11: 151169.Google Scholar
Rankin, M.A., and Burchsted, J.C.A.. 1992. The cost of migration in insects. Annual Review of Entomology 37: 533559.CrossRefGoogle Scholar
Roff, D.A. 1991. Life history consequences of bioenergetic and biomechanical constraints on migration. American Zoologist 31: 243251.CrossRefGoogle Scholar
Salom, S.M., and McLean, J.A.. 1989. Influence of wind on the spring flight of Trypodendron lineatum Oliv. (Coleoptera: Scolytidae) in a second growth coniferous forest. The Canadian Entomologist 121: 109119.CrossRefGoogle Scholar
SAS Institute, 1987. SAS User's Guide: Statistics. Version 5. SAS Institute, Cary, NC.Google Scholar
Scherrer, B. 1984. Biostatistique. Gaëtan Morin Editeur. Québec, Canada. 850 pp.Google Scholar
Shapiro, S.S., and Wilk, M.B.. 1965. An analysis of variance for normality (complete sample). Biometrika 52: 591611.CrossRefGoogle Scholar
Slansky, F. Jr., and Haack, R.A.. 1986. Age-specific behaviour in relation to body weight and lipid content of Ips calligraphus reared in slash pine bolts with thick or thin inner bark (phloem). Entomologia Experimentalis et Applicata 40: 197207.CrossRefGoogle Scholar
Termier, M., Lafay, J.F., Dutrieux, G., and Mainguet, A.M.. 1988. Etude de l'action de certains facteurs sur les performances de vol du Doryphore Leptinotarsa decemlineata Say. Oecologia Applicata 9: 219248.Google Scholar
Thompson, S.N., and Bennett, R.B.. 1971. Oxidation of fat during flight of male Douglas fir beetles. Dendroctonus pseudotsugae, Journal of Insect Physiology 17: 15551563.CrossRefGoogle Scholar