Skip to main content Accessibility help
×
Home

Natural variation in the growth and development of Protopiophila litigata (Diptera: Piophilidae) developing in three moose (Artiodactyla: Cervidae) antlers

  • Christopher S. Angell (a1) and Olivia Cook (a1)

Abstract

In animals, the early-life environment influences growth and development, which can have lasting effects on life history and fitness into adulthood. We investigated the patterns of growth, pupal development time, and their covariation in Protopiophila litigata Bonduriansky (Diptera: Piophilidae) larvae of both sexes collected from three discarded moose (Alces alces (Linnaeus) (Artiodactyla: Cervidae)) antlers of varying size, chewing damage (used to infer relative age), and P. litigata density. Males tended to be smaller and their pupation lasted longer than females. One of the antlers was highly attractive to adult P. litigata, whereas the other two attracted few or none. Individuals from one antler of low attractiveness were smaller and took longer to eclose than individuals from either other antler, perhaps due to its high larval density. The relationship between body size and pupal development time also differed among antlers, being positively correlated in the most attractive antler and negatively correlated in the two other antlers.

Copyright

Corresponding author

1Corresponding author (e-mail: cange044@uottawa.ca)

Footnotes

Hide All

Subject editor: Leah Flaherty

Footnotes

References

Hide All
Andersson, M. 1994. Sexual selection. Princeton University Press, Princeton, New Jersey, United States of America.
Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67: 148. http://doi.org/10.18637/jss.v067.i01.
Bonduriansky, R. 1995. A new Nearctic species of Protopiophila Duda (Diptera: Piophilidae), with notes on its behaviour and comparison with P. latipes (Meigen). The Canadian Entomologist, 127: 859863. http://doi.org/10.4039/Ent127859-6.
Bonduriansky, R. 1996. Effects of body size on mate choice and fecundity in the antler fly, Protopiophila litigata (Diptera: Piophilidae). M.Sc. thesis. University of Guelph, Guelph, Ontario, Canada.
Bonduriansky, R. 2002. Leaping behaviour and responses to moisture and sound in larvae of piophilid carrion flies. The Canadian Entomologist, 134: 647656. http://doi.org/10.4039/Ent134647-5.
Bonduriansky, R. and Brassil, C.E. 2002. Rapid and costly ageing in wild male flies. Nature, 420: 377377. http://doi.org/10.1038/420377a.
Bonduriansky, R. and Brooks, R.J. 1997. A technique for measuring and marking live flies. The Canadian Entomologist, 129: 827830. http://doi.org/10.4039/Ent129827-5.
Bonduriansky, R. and Brooks, R.J. 1998. Male antler flies (Protopiophila litigata; Diptera: Piophilidae) are more selective than females in mate choice. Canadian Journal of Zoology, 76: 12771285. http://doi.org/10.1139/z98-069.
Bonduriansky, R. and Brooks, R.J. 1999a. Why do male antler flies (Protopiophila litigata) fight? The role of male combat in the structure of mating aggregations on moose antlers. Ethology Ecology & Evolution, 11: 287301. http://doi.org/10.1080/08927014.1999.9522829.
Bonduriansky, R. and Brooks, R.J. 1999b. Reproductive allocation and reproductive ecology of seven species of Diptera. Ecological Entomology, 24: 389395. http://doi.org/10.1046/j.1365-2311.1999.00221.x.
Breheny, P. and Burchett, W. 2017. Visualization of regression models using visreg. The R Journal, 9: 5671.
Fox, J. and Weisberg, S. 2011. An R companion to applied regression. Sage, Thousand Oaks, California, United States of America. Available from http://socserv.socsci.mcmaster.ca/jfox/Books/Companion [accessed 12 April 2019].
Michael, E.D. 1965. Characteristics of shed antlers from white-tailed deer in south Texas. The Journal of Wildlife Management, 29: 376380. http://doi.org/10.2307/3798444.
Oudin, M.J., Bonduriansky, R., and Rundle, H.D. 2015. Experimental evidence of condition-dependent sexual dimorphism in the weakly dimorphic antler fly Protopiophila litigata (Diptera: Piophilidae). Biological Journal of the Linnean Society, 116: 211220. http://doi.org/10.1111/bij.12549.
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from www.R-project.org [accessed 12 April 2019].
Schielzeth, H. 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1: 103113. http://doi.org/10.1111/j.2041-210X.2010.00012.x.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. 2012. NIH image to image J: 25 years of image analysis. Nature Methods, 9: 671675. http://doi.org/10.1038/nmeth.2089.
Stearns, S.C. 1992. The evolution of life histories. Oxford University Press, Toronto, Ontario, Canada.
van der Have, T.M. and de Jong, G. 1996. Adult size in ectotherms: temperature effects on growth and differentiation. Journal of Theoretical Biology, 183: 329340. http://doi.org/10.1006/jtbi.1996.0224.
van Noordwijk, A.J. and de Jong, G. 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. The American Naturalist, 128: 137142.
Wiebe, K.L. and Bortolotti, G.R. 1992. Facultative sex ratio manipulation in American kestrels. Behavioral Ecology and Sociobiology, 30: 379386. http://doi.org/10.1007/BF00176172.

Natural variation in the growth and development of Protopiophila litigata (Diptera: Piophilidae) developing in three moose (Artiodactyla: Cervidae) antlers

  • Christopher S. Angell (a1) and Olivia Cook (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed