Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T14:23:08.233Z Has data issue: false hasContentIssue false

New species in the Lasioglossum petrellum species group identified through an integrative taxonomic approach

Published online by Cambridge University Press:  02 April 2012

Jason J. Gibbs*
Affiliation:
Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
*
1Corresponding author (e-mail: gibbs@yorku.ca).

Abstract

By means of an integrative taxonomic approach using morphology and DNA barcodes, multiple cryptic species within Lasioglossum (Dialictus) petrellum (Cockerell) (Hymenoptera: Halictidae) were discovered. Analysis of DNA barcode sequence data from across the supposed range of L. petrellum revealed distinct genetic differences that correlate with patterns of morphological variation and geographical distribution. The most morphologically distinct pair of species had the smallest DNA-barcode gap. The taxonomic limits of L. petrellum are revised and four new species are described and illustrated: L. (D.) tuolumnensesp. nov., L. (D.) griswoldisp. nov.L. (D.) droegeisp. nov., and L. (D.) viridipetrellumsp. nov. A key to species of the “L. petrellum” group is provided.

Résumé

Une méthodologie taxonomique intégrée basée sur la morphologie et les codes à barres d'ADN a permis la découverte de plusieurs espèces cryptiques chez Lasioglossum (Dialictus) petrellum (Cockerell) (Hymnenoptera: Halictidae). Une analyse des données des séquences des codes à barres d'ADN provenant de l'ensemble de l'aire de répartition présumée de L. petrellum a révélé l'existence de différences génétiques distinctes qui correspondent à des patrons de variation morphologique et de répartition géographique. La paire d'espèces qui est la plus distincte morphologiquement est celle qui a la plus faible distance entre les codes à barres d'ADN. Les limites taxonomiques de L. petrellum se retrouvent donc redéfinies avec la description et l'illustration de quatre nouvelles espèces, L. (D.) tuolumnensesp. nov., L. (D.) griswoldisp. nov., L. (D.) droegeisp. nov. et L. (D.) viridipetrellumsp. nov. Une clef permet l'identification des espèces du groupe de “L. petrellum”.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ascher, J.S. et al. 2009. Apoidea species guide [online]. Available from http://www.discoverlife.org/mp/20q?guide=Apoidea_species [accessed 9 July 2009].Google Scholar
Batra, S.W.T. 1966. The life cycle and behavior of the primitively social bee, Lasioglossum zephyrum (Halictidae). University of Kansas Science Bulletin, 46: 359423.Google Scholar
Blüthgen, P. 1931. Beiträge zur Kenntnis der Bienengattung Halictus Latr. III. Mitteilungen aus dem Zoologischen Museum in Berlin, 17: 319398.Google Scholar
Campbell, J.W., Hanula, J.L., and Waldrop, T.A. 2007. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biological Conservation, 134: 393404.CrossRefGoogle Scholar
Carman, G.M., and Packer, L. 1997. A cryptic species allied to Halictus ligatus Say (Hymenopetera: Halictidae) deteced by allozyme electrophoresis. Journal of Kansas Entomological Society, 69: 168176.Google Scholar
Cockerell, T.D.A. 1903. New bees from southern California and other records. Bulletin of the Southern California Academy of Sciences, 2: 8494.Google Scholar
Cockerell, T.D.A. 1916. The bees of the Coronado Islands. The Canadian Entomologist, 48: 5458.CrossRefGoogle Scholar
Coyne, J.A., and Orr, H.A. 2004. Speciation. Sinauer Associates Inc., Sunderland, Massachusetts.Google Scholar
Danforth, B.N., Conway, L., and Ji, S.Q. 2003. Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Systematic Biology, 52: 2336.CrossRefGoogle ScholarPubMed
DeSalle, R., Egan, M.G., and Siddall, M. 2005. The unholy trinity: taxonomy, species delimitation, and DNA barcoding. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 360: 19051916.CrossRefGoogle ScholarPubMed
Ebmer, A.W. 1976. Liste der mittelleuropäischen Halictus- und Lasioglossum-Arten. Linzer Biologische Beiträge, 8: 393405.Google Scholar
Eickwort, G.C. 1988. Distribution patterns and biology of West Indian sweat bees (Hymenoptera: Halictidae). In Zoogeography of Caribbean insects. Edited by Liebherr, J.K.. Cornell University Press, Ithaca, New York.Google Scholar
Eickwort, G.C., and Eickwort, K.R. 1971. Aspects of the biology of Costa Rican halictine bees, II. Dialictus umbripennis and adaptations of its caste structure to different climates. Journal of the Kansas Entomological Society, 44: 343373.Google Scholar
Engel, M.S. 2001. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History, 259: 1192.2.0.CO;2>CrossRefGoogle Scholar
Engel, M.S., Hinojosa-Díaz, I.A., and Yáñez-Ordóñez, O. 2007. The Augochlora-like Dialictus from Guatemala and southern México (Hymenoptera: Halictidae). Acta Zoológica Mexicana, 23: 125134.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek., R.. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294299.Google ScholarPubMed
Gibbs, J. in press. An aberrant bee of the species Lasioglossum (Dialictus) disparile (Cresson) with brief taxonomic notes on the species. Journal of the Kansas Entomological Society.Google Scholar
Gibbs, J. 2009. An integrative taxonomic approach reveals new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032: 138.CrossRefGoogle Scholar
Goloboff, P.A., Farris, J.S., Källersjö, M., Oxelman, B.Ramírez, M.J., and Szumik, C.A. 2003 a. Improvements to resampling measures of group support. Cladistics, 19: 324332.CrossRefGoogle Scholar
Goloboff, P.A., Farris, J.S., and Nixon, K. 2003 b. T.N.T.: tree analysis using new technology [online]. Available from www.zmuc.dk/public/phylogeny [accessed 31 December 2008].Google Scholar
Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie, P., and Hebert, P.D.N. 2005. Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 360: 19591967.CrossRefGoogle ScholarPubMed
Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D.N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103: 968971.CrossRefGoogle ScholarPubMed
Harris, R.A. 1979. A glossary of surface sculpturing. Occasional Papers in Entomology (Sacramento), 28: 131.Google Scholar
Hebert, P.D.N., and Gregory, T.R. 2005. The promise of DNA barcoding for taxonomy. Systematic Biology, 54: 852859.CrossRefGoogle ScholarPubMed
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101: 1481214817.CrossRefGoogle ScholarPubMed
Huelsenbeck, J.P., and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754755.CrossRefGoogle ScholarPubMed
Hurd, P.D. Jr., 1979. Superfamily Apoidea. In Catalog of Hymenoptera in America North of Mexico. Edited by Krombein, K.V., Hurd, P.D. Jr., Smith, D.R., and Burks, B.D.. Smithsonian Institution Press, Washington, D.C. pp. 17412209.Google Scholar
Ivanova, N., deWaard, J., and Hebert, P. 2006. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6: 9981002.CrossRefGoogle Scholar
Kalhorn, K.D., Barrows, E.D., and LaBerge, W.E. 2003. Bee (Hymenoptera: Apoidea: Apiformes) diversity in an Appalachian shale barrens. Journal of the Kansas Entomological Society, 76: 455468.Google Scholar
Kuhlmann, M., Else, G.R., Dawson, A., and Quicke, D.L.J. 2008. Molecular, biogeographical and phenological evidence for the existence of three western European sibling species in the Colletes succinctus group (Hymenoptera: Apidae). Organisms Diversity & Evolution, 7: 155165.CrossRefGoogle Scholar
MacKay, P.A., and Knerer, G. 1979. Seasonal occurrence and abundance in a community of wild bees from an old field habitat in southern Ontario. The Canadian Entomologist, 111: 367376.CrossRefGoogle Scholar
Meusnier, I., Singer, G.A.C., Landry, J.-F., Hickey, D.A., Hebert, P.D.N., and Hajibabaei, M. 2008. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics, 9: 214.CrossRefGoogle ScholarPubMed
Michener, C.D. 1951. Superfamily Apoidea. In Hymenoptera of America north of Mexico. Edited by Muesebeck, C.F., Krombein, K.V., and Townes, H.K.. United States Department of Agriculture, Agriculture Monograph No. 2. United States Government Printing Office, Washington, D.C. pp. 10431255.Google Scholar
Michener, C.D. 1974. The social behavior of the bees. Belknap Press of Harvard University Press, Cambridge, Massachusetts.Google Scholar
Michener, C.D. 1990. Reproduction and castes in social halictine bees. In Social insects: an evolutionary approach to castes and reproduction. Edited by Engels, W.. Springer-Verlag, New York. pp. 77121.CrossRefGoogle Scholar
Michener, C.D. 2007. The bees of the world. 2nd ed. Johns Hopkins University Press, Baltimore, Maryland.CrossRefGoogle Scholar
Mitchell, T.B. 1960. Bees of the eastern United States. Vol. I. North Carolina Agricultural Experiment Station Technical Bulletin No. 141.Google Scholar
Miyanaga, R., Maeta, Y., and Sakagami, S.F. 1999. Geographical variation of sociality and size linked color patterns in Lasioglossum (Evylaeus) apristum (Vachal) in Japan (Hymenoptera, Halictidae). Insectes Sociaux, 46: 224232.CrossRefGoogle Scholar
Moure, J.S., and Hurd, P.D. Jr., 1987. An annotated catalog of the halictid bees of the Western Hemisphere (Hymenoptera: Halictidae). Smithsonian Institution Press, Washingtion, D.C.Google Scholar
Murray, T.E., Fitzpatrick, Ú., Brown, M.J.F., and Paxton, R.J. 2008. Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conservation Genetics, 9: 653666.CrossRefGoogle Scholar
Packer, L. 1992. The social organisation of Lasioglossum (Dialictus) laevissimum in southern Alberta. Canadian Journal of Zoology, 70: 17671774.CrossRefGoogle Scholar
Packer, L. 1993. Multiple-foundress associations in sweat bees. In Queen number and sociality in insects. Edited by Keller, L.. Oxford University Press, New York.Google Scholar
Packer, L. 1994. Lasioglossum (Dialictus) tenax (Sandhouse) (Hymenoptera, Halictidae) as a solitary sweat bee. Insectes Sociaux, 41: 309313.CrossRefGoogle Scholar
Packer, L. 1997. The relevance of phylogenetic systematics to biology: examples from medicine and behavioural ecology. Mémoires du Muséum National d'Histoire Naturelle, 173: 1129.Google Scholar
Packer, L. 2008. Phylogeny and classification of the Xeromelissinae (Hymenoptera: Apoidea, Colletidae) with special emphasis on the genus Chilicola. Systematic Entomology, 33: 7296.CrossRefGoogle Scholar
Packer, L., and Taylor, J.S. 1997. How many hidden species are there? An application of the phylogenetic species concept to genetic data for some comparatively well known bee “species”. The Canadian Entomologist, 129: 587594.CrossRefGoogle Scholar
Packer, L., Gibbs, J., Sheffield, C., and Hanner, R. 2009. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources, 9(S1): 4250.CrossRefGoogle ScholarPubMed
Page, T.J., Choy, S.C., and Hughes, J.M. 2005. The taxonomic feedback loop: symbiosis of morphology and molecules. Biology Letters, 1: 139142.CrossRefGoogle ScholarPubMed
Pesenko, Y.A. 2007. Subgeneric classification of the Palaearctic bees of the genus Evylaeus Robertson (Hymenoptera: Halictidae). Zootaxa, 1500: 154.CrossRefGoogle Scholar
Prendini, L. 2005. Comment on “Identifying spiders through DNA barcodes”. Canadian Journal of Zoology, 83: 498504.CrossRefGoogle Scholar
Sandhouse, G.A. 1924. New North American species of bees belonging to the genus Halictus (Chloralictus). Proceedings of the United States National Museum, 65: 143.CrossRefGoogle Scholar
Sheffield, C.S., Hebert, P.D.N., Kevan, P.G., and Packer, L. 2009. DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources, 9(S1): 196207.CrossRefGoogle ScholarPubMed
Skevington, J.H., Kehlmaier, C., and Ståhls, G. 2007. DNA barcoding: mixed results for big-headed flies (Diptera: Pipunculidae). Zootaxa, 1423: 126.CrossRefGoogle Scholar
Smith, M., Rodriguez, J.J., Whitfield, J.B.Deans, A.R.Janzen, D.H., Hallwachs, W., and Hebert, P.D.N. 2008. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America, 105: 1235912364.CrossRefGoogle ScholarPubMed
Smith, M.A., Woodley, N., Hallwachs, W., Janzen, D.H., and Hebert, P.D.N. 2006. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 103: 36573662.CrossRefGoogle ScholarPubMed
Smith, M.A., Wood, D.M., Janzen, D.H., Hallwachs, W., and Hebert, P.D.N. 2007. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences of the United States of America, 104: 49674972.CrossRefGoogle Scholar
Song, H., Buhay, J.E., Whiting, M.F., and Crandall, K.A. 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105: 1348613491.CrossRefGoogle ScholarPubMed
Tao, N., Richardson, R., Bruno, W., and Kuiken, C. 2005. FindModel [online]. Available from http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html [accessed 24 February 2009].Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 48764882.CrossRefGoogle ScholarPubMed
Vaglia, T., Haxaire, J., Kitching, I.J., Meusnier, I., and Rougerie, R. 2008. Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-group (Lepidoptera: Sphingidae). Zootaxa, 1923: 1836.CrossRefGoogle Scholar
Warncke, K. 1975. Beitrag zur Systematik und Verbreitung der Furchenbienen in der Turkei (Hymenoptera, Apoidea, Halictus). Polskie Pismo Entomologiczne, 45: 81128.Google Scholar
Wcislo, W.T. 1997. Invasion of nests of Lasioglossum imitatum by a social parasite, Paralictus asteris (Hymenoptera: Halictidae). Ethology, 103: 111.CrossRefGoogle Scholar
Wheeler, W.M. 1928. The social insects: their origin and evolution. Kegan Paul, Trench, Trubner and Co., Ltd. London.CrossRefGoogle Scholar
Witt, J.D., Threloff, S.D.L., and Hebert, P.D.N. 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15: 30733082.CrossRefGoogle Scholar
Yanega, D. 1997. Demography and sociality in halictine bees (Hymenoptera: Halictidae). In The evolution of social behavior in insects and arachnids. Edited by Choe, J.C. and Crespi, B.J.. Cambridge University Press, Cambridge, United Kingdom. pp. 293315.CrossRefGoogle Scholar