Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T13:34:01.886Z Has data issue: false hasContentIssue false

Nucleopolyhedrovirus infection in obliquebanded leafroller (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  31 May 2012

I. Pronier
Affiliation:
Université de Picardie Jules Verne, Faculté des Sciences, Laboratoire de Biologie des Entomophages, 33 rue Saint Leu, 80039 Amiens, France
J. Paré
Affiliation:
Université de Picardie Jules Verne, Faculté des Sciences, Laboratoire de Biologie des Entomophages, 33 rue Saint Leu, 80039 Amiens, France
J-C Wissocq
Affiliation:
Université de Picardie Jules Verne, Faculté des Sciences, Laboratoire de Biologie des Entomophages, 33 rue Saint Leu, 80039 Amiens, France
C. Vincent*
Affiliation:
Centre de Recherche et de Développement en Horticulture, Agriculture et Agroalimentaire Canada, 430 Boul. Gouin, Saint-Jean-sur-Richelieu, Québec, J3B 3E6 Canada
*
1 Corresponding author (e-mail: vincentch@em.agr.ca).

Abstract

A virus isolated from obliquebanded leafroller, Choristoneura rosaceana (Harris), larvae collected in an apple, Malus domestica Borkh. (Rosaceae), orchard of Saint-Joseph-du-Lac (Quebec, Canada) was studied. Microscopic studies revealed that it was a uninucleocapsid nucleopolyhedrovirus from the family Baculoviridae. Larval mortality was approximately 75% (0% mortality in control group) in larvae infected as third instars immersed in a suspension of 1.7 × 108 occlusion bodies/mL. The average time for larval mortality was 23 ± 3 d after treatment. The majority (95.5%) of infected larvae died as fifth or sixth instars. Infection was observed primarily in fat body cells, and occasionally in the tracheal matrix and epidermis. Mean larval development time of infected larvae surviving to pupae was 20 ± 3 d, significantly greater than the 18 ± 3 d observed in control larvae. Adult emergence was significantly lower in pupae of treated larvae (73.6%) than in the control group (93.5%). Our work constitutes the first baseline study of naturally occurring virus of the obliquebanded leafroller.

Résumé

Un virus a été isolé de chenilles de la tordeuse à bandes obliques, Choristoneura rosaceana (Harris), collectées dans un verger de pommiers, Malus domestica Borkh. (Rosaceae), à Saint-Joseph-du-Lac (Québec, Canada). Des observations microscopiques ont révélé qu’il s’agissait d’un virus de la polyhédrose nucléaire, possédant une nucléocapside par enveloppe, de la famille des Baculoviridae. La mortalité larvaire était d’environ 75% (aucune mortalité dans le groupe témoin) lorsque les chenilles étaient infectées au troisième stade par immersion dans une suspension de 1,7 × 108 corps d’inclusions polyédriques/mL. La durée de vie moyenne avant la mort de ces individus était de 23 ± 3 j. La majorité (95,5%) des chenilles malades étaient mortes au cours du cinquième ou sixième stade larvaire. L’infection virale était localisée principalement dans le tissu adipeux et occasionnellement dans la matrice trachéale et le tégument. Pour les individus ayant survécu à l’infection, la durée moyenne du développement larvaire des individus infectés ayant atteint le stade de chrysalide de 20 ± 3 j était significativement allongée par rapport aux 18 ± 3 j des individus témoins. L’émergence des adultes était réduite à 73,6% pour les individus traités par le virus en comparaison des 93,5% observés dans le groupe témoin. Notre travail constitue la première étude de base concernant un virus qui survient de façon naturelle chez la tordeuse à bandes obliques.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amargier, A., Abol-Ela, S., Vergara, S., Meynadier, G., Martouret, D., Croizier, G. 1981. Etudes histologiques et ultrastructurales des larves de Pandemis heparana (Lep. Tortricidae) au cours des stades avancés d'une baculovirose due à un nouveau virus inducteur de diapause. Entomophaga 26: 319–32CrossRefGoogle Scholar
Blissard, G.W. 1996. Baculovirus-insect interactions. Cytotechnology 20: 7393CrossRefGoogle ScholarPubMed
Carrière, Y., Deland, J.P., Roff, D.A., Vincent, C. 1994. Life-history costs associated with the evolution of insecticide resistance. Proceedings of the Royal Society of London B Biological Sciences 258: 3540Google Scholar
Chapman, P.J., Lienk, S.E. 1971. Tortricid Fauna of Apple in New York. Special Publication. Geneva: New York State Agricultural Experiment StationGoogle Scholar
Duan, L., Otvos, I.S. 2001. Influence of larval age and the virus concentration on mortality and sublethal effects of a nucleopolyhedrovirus on the western spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology 30: 136–46CrossRefGoogle Scholar
Gabe, M. 1968. Techniques histologiques. Paris: Masson et CieGoogle Scholar
Glauert, A.M. 1974. Practical methods in electron microscopy. Volume 2. Amsterdam: North-HollandGoogle Scholar
Keddie, B.A., Aponte, G.W., Volkman, L.E. 1989. The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science (Washington, DC) 243: 1728–30CrossRefGoogle Scholar
Lucarotti, C.J., Morin, B. 1997. A nuclear polyhedrosis virus from the obliquebanded leafroller Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology 70: 121–6CrossRefGoogle ScholarPubMed
Martigoni, M.E., Iwai, P.J. 1986. A Catalogue of viral diseases of insects, mites and ticks. 4th edition. US Forest Service General Technical Report PNW–195Google Scholar
Pree, D.J., Whitty, K.J., Pogoda, M.K., Bittner, L.A. 2001. Occurrence of resistance to insecticides in populations of the obliquebanded leafroller, from orchards in southern Ontario. The Canadian Entomologist 133: 93103CrossRefGoogle Scholar
Pronier, I. 2000. Etude biologique des interactions entre une nouvelle souche de virus et son hôte : la tordeuse à bandes obliques (Choristoneura rosaceana, Lepidoptera : Tortricidae). Implications dans les perspectives de lutte biologique. PhD thesis, Université de Picardie Jules Verne, Amiens, FranceGoogle Scholar
Reissig, W.H., Stanley, B.H., Hebding, H.E. 1986. Azinphosmethyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology 79: 329–33CrossRefGoogle Scholar
Sait, S.M., Begon, M., Thompson, D.J. 1994. The effects of a sublethal baculovirus infection in the Indian meal moth, Plodia interpunctella. Journal of Animal Ecology 63: 541–50CrossRefGoogle Scholar
Shorey, H.H., Hale, R.L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522–4CrossRefGoogle Scholar
Smirle, M.J., Vincent, C., Zurowski, C.L., Rancourt, B. 1998. Azinphosmethyl resistance in the obliquebanded leafroller, Choristoneura rosaceana: reversion in the absence of selection and relationship to detoxification enzyme activity. Pesticide Biochemistry and Physiology 61: 183–9CrossRefGoogle Scholar
Smirnoff, W.A., Burke, J.M. 1970. A nuclear polyhedrosis of Choristoneura rosaceana. Journal of Invertebrate Pathology 16: 282–3CrossRefGoogle Scholar
SPSS Inc. 1998. SYSTAT 8.0. computer software. Chicago: SPSS IncGoogle Scholar
Tanada, Y., Kaya, H.K. (Eds). 1993. Insect Pathology. New York: Academic PressGoogle Scholar
Volkman, L.E. 1997. Nucleopolyhedrovirus interactions with their insect hosts. Advances in Virus Research 48: 313–48CrossRefGoogle ScholarPubMed
Zimmermann, G., Weiser, J. 1991. Pathogens and diseases. pp 253–71 in van der Geest, L.P.S., Evenhuis, H.H. (Eds), World crop pests. Volume 5. Tortricid pests: their biology, natural enemies and control. Amsterdam: ElsevierGoogle Scholar