Skip to main content Accessibility help

Nutritional stress causes male-biased sex ratios in eastern spruce budworm (Lepidoptera: Tortricidae)

  • Roberto Quezada-García (a1), Deepa Pureswaran (a2) and Éric Bauce (a1)

Nutritional variability in resources may cause differential mortality between sexes resulting in biased sex ratios. If males and females differ in fitness, then mortality of the more sensitive sex can cause a bias in sex ratios, and can stimulate dispersion of males. We reared three generations of spruce budworm (Choristoneura fumiferana (Clemens); Lepidoptera: Tortricidae) on two artificial diets: a “normal” diet that provided all nutritional requirements for development and a “stress” diet (deficient in sugars and slightly higher in nitrogen), that simulated deterioration of food quality during outbreak conditions and had a detrimental impact on larval survival, development and growth. We tested the effects of continued nutritional stress on the sex ratio of pupae and adults. We found biased sex ratios in favour of males related to diet. Low quality food resulted in fewer females. This distortion was observed from the second generation onward, with a lower percentage of females reaching the pupal and adult stage. These results provide evidence that nutritional variation causes differential mortality between sexes, suggesting that females are more sensitive to nutritional stress. This is the first study that demonstrates sex ratio distortion due to nutritional selection pressure in spruce budworm. Our results indicate the importance of studying sex ratio distortion of spruce budworm in outbreak conditions.

Corresponding author
1Corresponding author (e-mail:
Hide All

Subject editor: Rob Johns

Hide All
Awmack, C.S.Leather, S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47: 817844.
Bidon, Y. 1999. Interactions entre la qualité du substrat nutritif et le Bacillus thuringiensis (Bt) sur le comportement, les performances et l'utilisation de la nourriture par les larves de tordeuse de bourgeons de l’épinette (Choristoneura fumiferana (Clem.)). Doctoral dissertation, Université Laval, Sainte-Foy, Québec, Canada.
Campbell, R., Torgersen, T.R., Hosman, K., Srivastava, N. 1983. Sex ratios of the western spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist, 115: 10591063.
Carisey, N.Bauce, E. 2002. Does nutrition-related stress carry over to spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) progeny? Bulletin of Entomological Research, 92: 101108.
Caswell, H.Weeks, D.E. 1986. Two-sex models: chaos, extinction, and other dynamic consequences of sex. American Naturalist, 128: 707735.
Charnov, E.L., Los-Den Hartogh, R.L., Jones, W.T., van Den, Assem J. 1981. Sex ratio evolution in a variable environment. Nature, 289: 2733.
Dingle, H. 1966. The effect of population density on mortality and sex ratio in the milkweed bug, Oncopeltus, and the cotton stainer, Dysdercus (Heteroptera). American Naturalist, 100: 465470.
Godfray, H.C.J.Werren, J.H. 1996. Recent development in sex ratio studies. Tree, 71: 5363.
Greenbank, D.O., Schaeffer, G.W., Rainey, F.R.S. 1980. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar and aircraft. Memoirs of the Entomological Society of Canada, 110: 1–48.
Hamilton, W.D. 1967. Extraordinary sex ratios. Science, 156: 477488.
House, C.M., Simmons, L.W., Kotiaho, J.S., Tomkins, J.L., Hunt, J. 2011. Sex ratio bias in the dung beetle Onthophagus taurus: adaptive allocation or sex-specific offspring mortality? Evolutionary Ecology, 25: 363372. doi:10.1007/s10682-010-9423-0.
Jiggins, F.M., Hurst, G.D.G., Majerus, M.E.N. 1998. Sex ratio distortion in Acraea encedon (Lepidoptera: Nymphalidae) is caused by a male-killing bacterium. Heredity, 81: 8791.
Lobinger, G. 1996. Variations in sex ratio during an outbreak of Ips typographus (Col., Scolytidae) in southern Bavaria. Anz Schädlingskde, Pflanzenschutz, Umweltschutz, 69: 5153.
MacLean, D.A. 1984. Effects of spruce budworm outbreaks on the productivity and stability of balsam fir forest. Forestry Chronicle, 60: 273279.
Mauffette, Y.Jobin, L. 1985. Effects of density on the proportion of male and female pupae in gypsy-moth population. The Canadian Entomologist, 117: 535539.
Miller, C.A. 1975. Spruce budworm: how it lives and what it does. Forestry Chronicle, 51: 136138.
Montgomery, M.E. 1983. Biomass and nitrogen budgets during larval development of Lymantria dispar and Choristoneura fumiferana: allometrics relationships. In CANUSA workshop on forest defoliator-host-interactions: a comparison between gypsy moth and spruce budworm, New Haven, CT, 5–7 April. General technical report NE-85. Edited by R.L. Talerico and M. Montgomery. United States Department of Agriculture Forest Service, Broomall, Pennsylvania, United States of America. Pp. 133140.
Mopper, S.Whitham, T.G. 1992. The plant stress paradox: effects on pinyon sawfly sex ratios and fecundity. Ecology, 73: 515525.
Morris, R.F. 1963. Foliage depletion and spruce budworm. Memoirs of the Entomological Society of Canada, 31: 223228.
Nealis, V.G.Régnière, J. 2004. Fecundity and recruitment of eggs during outbreaks of the spruce budworm. The Canadian Entomologist, 136: 591604.
Rauchfuss, J.Ziegler, S.S. 2011. The geography of spruce budworm in eastern North America. Geography Compass, 5/8: 564580. doi:10.1111/j.1749-8198.2011.00441.x.
Régnière, J.Nealis, V.G. 2007. Ecological mechanisms of population change during outbreaks of the spruce budworm. Ecological Entomology, 32: 461477. doi:10.1111/j.1365-2311.2007.00888.x.
Robertson, J.L. 1985. Choristoneura occidentalis and Choristoneura fumiferana. In Handbook of insect rearing. Volume 2. Edited by P. Singh and R.F. Moore. Elsevier Sciences Publishers, New York, New York, United States of America. Pp. 227236.
Robinson, A.S. 1983. Sex-ratio manipulation in relation to insect pest control. Annual Review of Genetics, 17: 191214.
Royama, T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecological Monographs, 54: 429462.
SAS Institute Inc. 2003. SAS/STAT user's guide, release 9.1 edition. SAS Institute Inc., Cary, North Carolina, United States of America.
Tabadkani, S.M., Ashouri, A., Rahimi-Alangi, V., Fathi-Moghaddam, M. 2013. When to estimate sex ratio in natural population of insects? A study on sex ratio variations of gall midges within a generation. Entomological Science, 16: 5459.
White, T.C.R. 2004. Nutrient retranslocation hypothesis: a subset of the flush-feeding senescence-feeding hypothesis. Oikos, 103: 217.
Wiklund, C., Wickman, P.O., Nylin, S. 1992. A sex difference in the propensity to enter direct/diapause development: a result of selection for protandry. Evolution, 46: 519528.
Zar, H.J. 2010. Biostatistical analysis. Pearson Educational, Upper Saddle River, New Jersey, United States of America.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed