Skip to main content
×
Home
    • Aa
    • Aa

Plant module size and attack by the goldenrod spindle-gall moth

  • Stephen B. Heard (a1) and Graham H. Cox (a1)
Abstract
Abstract

Larvae of the gall-inducing moth Gnorimoschema gallaesolidaginis (Riley) (Lepidoptera: Gelechiidae) attack ramets of Solidago altissima L. and S. gigantea Aiton (Asteraceae), initiating stem galls early in ramet growth. We examined the relationship between ramet size (as an indicator of plant vigour) and galling rate over 3 years at a field site in Toronto, Ontario, Canada. We marked Solidago ramets along line transects, measured their stem diameter, and recorded their fate (galled or ungalled) during the season. For S. altissima, galls were numerous enough for analysis in 2 years, and the frequency of galling increased monotonically with ramet stem diameter in both years. For S. gigantea, galls were numerous enough for analysis in all 3 years, but attack rate - stem diameter relationships were complex. In 2004 the galling frequency peaked at intermediate stem diameter, but in 2005 the galling frequency increased monotonically with stem diameter (and in 2006 the nonsignificant trend was similar). Overall, our data are most consistent with the plant-vigour hypothesis, but the 2004 data for S. gigantea lend some support to the suggestion that herbivore attack might sometimes be most intense on intermediate-sized modules.

Résumé

Les larves du papillon de nuit gallicole Gnorimoschema gallaesolidaginis (Riley) (Lepidoptera: Gelechiidae) attaquent les ramilles de Solidago altissima L. et de S. gigantea Aiton (Asteraceae), ce qui provoque la formation de galles sur la tige tôt dans la croissance des ramilles. Nous avons examiné la relation entre la taille de la ramille (comme indicateur de la vigueur de la plante) et le taux de formation des galles pendant trois années à un site de terrain de Toronto, Canada. Nous avons marqué des ramilles de Solidago le long de lignes de transect, mesuré le diamètre des tiges et déterminé leur sort (avec ou sans galles) au cours de la saison. Chez S. altissima, les galles étaient assez abondantes durant deux des années pour permettre l’analyse; la fréquence de formation des galles s’est accrue de façon monotone en fonction du diamètre des tiges pendant les deux années. Chez S. gigantea, les galles étaient assez abondantes durant les trois années, mais les relations entre le taux d’attaque et le diamètre de la tige étaient complexes. En 2004, le taux de formation des galles a atteint un maximum aux tailles intermédiaires des tiges, mais en 2005 le taux de formation de galles a augmenté de manière monotone en fonction du diamètre de la tige (et en 2006 la tendance était semblable mais non significative). Dans leur ensemble, nos données s’accordent avec l’hypothèse de la vigueur de la plante; cependant, les données de 2004 chez S. gigantea apportent un certain appui aux propositions selon lesquelles l’attaque des herbivores peut quelquefois être plus intense sur les modules de taille intermédiaire.

[Traduit par la Rédaction]

Copyright
Corresponding author
1Corresponding author (e-mail: sheard@unb.ca).
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W.G. Abrahamson , K.D. McCrea , A.J. Whitwell , and L.A. Vernieri 1991. The role of phenolics in goldenrod ball gall resistance and formation. Biochemical Systematics and Ecology, 19: 615622.

C. Bjorkman 1998. Opposite, linear and non-linear effects of plant stress on a galling aphid. Scandinavian Journal of Forest Research, 13: 177183.

C.F. Bosio , K.D. McCrea , J.K. Nitao , and W.G. Abrahamson 1990. Defense chemistry of Solidago altissima — effects on the generalist herbivore Trichoplusia ni (Lepidoptera, Noctuidae). Environmental Entomology, 19: 465468.

S. Eber 2004. Bottom-up density regulation in the holly leaf-miner Phytomyza ilicis. Journal of Animal Ecology, 73: 948958.

J. Gershenzon 1994. Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20: 12811328.

S. Gripenberg , E. Morrien , A. Cudmore , J.P. Salminen , and T. Roslin 2007. Resource selection by female moths in a heterogeneous environment: what is a poor girl to do? Journal of Animal Ecology, 76: 854865.

S.L. Halpern , and N. Underwood 2006. Approaches for testing herbivore effects on plant population dynamics. Journal of Applied Ecology, 43: 922929.

K.L. Halverson , S.B. Heard , J.D. Nason , and J.O. Stireman , III. 2008. Differential attack on diploid, tetraploid, and hexaploid Solidago altissima L. by five insect gallmakers. Oecologia, 154: 755761.

D.C. Hartnett , and W.G. Abrahamson 1979. The effects of stem gall insects on life history patterns in Solidago canadensis. Ecology, 60: 910917.

S.B. Heard , and L.C. Remer 2008. Travel costs, oviposition behaviour and the dynamics of insect–plant systems. Theoretical Ecology, 1: 179188.

S.B. Heard , J.O. Stireman III, J.D. Nason , G.H. Cox , C.R. Kolacz , and J.M. Brown 2006. On the elusiveness of enemy-free space: spatial, temporal, and host-plant-related variation in parasitoid attack rates on three gallmakers of goldenrods. Oecologia, 150: 421434.

J.D. Horner , and W.G. Abrahamson 1992. Influence of plant genotype and environment on oviposition preference and offspring survival in a gall-making herbivore. Oecologia, 90: 323332.

H.M. Hull-Sanders , R. Clare , R.H. Johnson , and G.A. Meyer 2007. Evaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores. Journal of Chemical Ecology, 33: 781799.

R.H. Johnson , H.M. Hull-Sanders , and G.A. Meyer 2007. Comparison of foliar terpenes between native and invasive Solidago gigantea. Biochemical Systematics and Ecology, 35: 821830.

D. Kalemba , H. Marschall , and P. Bradesi 2001. Constituents of the essential oil of Solidago gigantea Ait. (giant goldenrod). Flavour and Fragrance Journal, 16: 1926.

K.C. Larson , and T.G. Whitham 1997. Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling. Oecologia, 109: 575582.

J.L. Maron , and E.E. Crone 2006. Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society of London B Biological Sciences, 273: 25752584.

A.J. McConnachie , M.P. Hill , M.J. Byrne , and M.P. de Wit 2003. Economic evaluation of the successful biological control of Azolla filiculoides in South Africa. Biological Control, 28: 2532.

M.L. McKinnon , D.T. Quiring , and E. Bauce 1999. Influence of tree growth rate, shoot size and foliar chemistry on the abundance and performance of a galling adelgid. Functional Ecology, 13: 859867.

J.D. Nason , S.B. Heard , and F.R. Williams 2002. Host associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae). Evolution, 56: 14751488.

P.W. Price 1991. The plant vigor hypothesis and herbivore attack. Oikos, 62: 244251.

P.W. Price , T. Ohgushi , H. Roininen , M. Ishihara , T.P. Craig , J. Tahvanainen , and S.M. Ferrier 2004. Release of phylogenetic constraints through low resource heterogeneity: the case of gall-inducing sawflies. Ecological Entomology, 29: 467481.

D.T. Quiring , L. Flaherty , R. Johns , and A. Morrison 2006. Variable effects of plant module size on abundance and performance of galling insects. InGalling arthropods and their associates: ecology and evolution. Edited by K. Ozaki , J. Yukawa , T. Ohgushi , and P.W. Price . Springer-Verlag, Sapporo, Japan. pp. 189198.

J.C. Santos , F.A.O. Silveira , and G.W. Fernandes 2008. Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evolutionary Ecology, 22: 123137.

J.O. Stireman III, J.D. Nason , and S.B. Heard 2005. Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod insect community. Evolution, 59: 25732587.

R. Walton , A.E. Weis , and J.P. Lichter 1990. Oviposition behavior and response to plant height by Eurosta solidaginis Fitch (Diptera: Tephritidae). Annals of the Entomological Society of America, 83: 509514.

P.W. Wellings 1987. Spatial distribution and interspecific competition. Ecological Entomology, 12: 359362.

T.C.R. White 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 63: 90105.

M.J. Wise , R.J. Fox , and W.G. Abrahamson 2006. Disarming the paradox of sublethal plant defense against insects: Trirhabda virgata larval development time and leaf tissue loss on Solidago altissima. Entomologia Experimenta et Applicata, 120: 7787.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 110 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 30th May 2017. This data will be updated every 24 hours.