Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T23:43:19.669Z Has data issue: false hasContentIssue false

Seasonal patterns in the structure of epigeic beetle (Coleoptera) assemblages in two subarctic habitats in Nunavut, Canada

Published online by Cambridge University Press:  25 February 2013

C.M. Ernst*
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Ontario, H9X 3V9 Canada
C.M. Buddle
Affiliation:
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Ontario, H9X 3V9 Canada
*
1Corresponding author (e-mail: crystal.ernst@mail.mcgill.ca).

Abstract

Seasonal patterns in the taxonomic and functional structure of epigeic Coleoptera assemblages in wet and mesic habitats were studied in Kugluktuk, Nunavut, Canada. Using pan and pitfall traps, 2638 beetles were collected between 21 June and 13 August 2010. Fifty species (including 17 new territory records) in 11 families were identified. The biomass of each specimen was estimated, and each was assigned to a functional group. Species composition differed between habitats throughout the active season and there was a rapid compositional turnover even though species diversity was similar in both habitats and among sampling periods. The functional beetle assemblages in the two habitats were different, and both assemblages experienced seasonal turnover in function; this effect was more pronounced in the mesic habitats. The beetle fauna in both habitats was predominantly entomophagous. We also examined the influence of seasonal weather patterns on assemblage structure: there is a significant relationship between mean daily temperature and assemblage structure. This relationship indicates that changes in weather (or longer-term changes in climate) could affect the diversity and ecological function of insects in this system. Given the significance of insects in the north, this could result in important changes to northern ecology.

Résumé

Nous avons étudié les patrons saisonniers des structures taxonomiques et fonctionnelles des peuplements épigées de Coléoptères dans des habitats secs et mésiques à Kugluktuk, Nunavut, Canada. Des pièges à cuvette et à fosse ont récolté 2638 coléoptères entre le 21 juin et le 13 août 2010. Nous y avons identifié 50 espèces (dont 17 retrouvées pour la première fois sur le territoire) appartenant à 11 familles. Nous avons estimé la biomasse de chaque spécimen et l'avons assignée au groupe fonctionnel correspondant. La composition spécifique varie d'un habitat à un autre durant toute la saison d'activité et il y a un taux rapide de remplacement de la composition, bien que la diversité spécifique soit semblable dans les deux habitats et d'une période d’échantillonnage à l'autre. Les peuplements fonctionnels de coléoptères sont différents dans les deux habitats et il se produit un remplacement des fonctions durant la saison dans les deux peuplements; le phénomène est plus accentué dans les habitats mésiques. La faune de coléoptères dans les deux habitats est surtout composée d'entomophages. Nous avons aussi examiné l'influence des patrons météorologiques saisonniers sur la structure des peuplements: il existe une relation significative entre la température moyenne journalière et la structure du peuplement. Cette relation signifie que des changements météorologiques (ou des changements climatiques à plus long terme) pourraient affecter la diversité et le fonctionnement écologique des insectes dans ce système. Compte tenu de l'importance des insectes dans le nord, cela pourrait entraîner des modifications sérieuses de l’écologie des régions nordiques.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blondel, J. 2003. Guilds or functional groups: does it matter? Oikos, 100: 223231.CrossRefGoogle Scholar
Bowden, J.J.Buddle, C.M. 2010. Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Territory (Canada). Ecoscience, 17: 287297.CrossRefGoogle Scholar
Briers, R.A., Cariss, H.M., Gee, J.H.R. 2003. Flight activity of adult stoneflies in relation to weather. Ecological Entomology, 28: 3140 . doi:10.1046/j.1365-2311.2003.00480.x.CrossRefGoogle Scholar
Choi, W.I., Choi, K.S., Lyu, D.P., Lee, J.S., Lim, J., Lee, S., et al. 2010. Seasonal changes of functional groups in coleopteran communities in pine forests. Biodiversity and Conservation, 19: 22912305 . doi:10.1007/s10531-010-9842-9.CrossRefGoogle Scholar
Coulson, S.J., Hodkinson, I.D., Webb, N.R. 2003. Aerial dispersal of invertebrates over a high-Arctic glacier foreland: Midtre Lovénbreen, Svalbard. Polar Biology, 26: 530537 . doi:10.1007/s00300-003-0516-x.CrossRefGoogle Scholar
Cummins, K.W. 1974. Structure and function of stream ecosystems. Bioscience, 24: 631641.CrossRefGoogle Scholar
Danks, H.V. 1978. Some effects of photoperiod, temperature, and food on emergence in three species of Chironomidae (Diptera). The Canadian Entomologist, 110: 289300.CrossRefGoogle Scholar
Danks, H.V. 1992. Long life cycles in insects. The Canadian Entomologist, 124: 167187 . doi:10.4039/Ent124167-1.CrossRefGoogle Scholar
Danks, H.V. 1999. Life cycle of polar arthropods: flexible or programmed? European Journal of Entomology, 96: 83102.Google Scholar
Danks, H.V. 2004. Seasonal adaptations in Arctic insects. Integrative and Comparative Biology, 44: 8594 . doi:10.1093/icb/44.2.85.CrossRefGoogle ScholarPubMed
Davis, A.J., Lawton, J.H., Shorrocks, B., Jenkinson, L.S. 1998. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology, 67: 600612.CrossRefGoogle Scholar
de Ruiter, P.C., Wolters, V., Moore, J.C. (eds) 2005. Dynamic food webs: multispecies assemblages, ecosystem development, and environmental change. Academic Press, Burlington, Massachusetts, United States of America.CrossRefGoogle Scholar
Downes, J.A. 1965. Adaptations of insects in the Arctic. Annual Review of Entomology, 10: 257274 . doi:10.1146/annurev.en.10.010165.001353.CrossRefGoogle Scholar
Downes, J.A. 1969. The swarming and mating flight of Diptera. Annual Review of Entomology, 14: 271298 . doi:10.1146/annurev.en.14.010169.001415.CrossRefGoogle Scholar
Drake, V.A.Farrow, R.A. 1988. The influence of atmospheric structure and motions on insect migration. Annual Review of Entomology, 33: 183210.CrossRefGoogle Scholar
Elmhagen, B., Tannerfeldt, M., Verucci, P., Angerbjörn, A. 2000. The Arctic fox (Alopex lagopus): an opportunistic specialist. Journal of Zoology, 251: 139149 . doi:10.1111/j.1469-7998.2000.tb00599.x.CrossRefGoogle Scholar
Forbes, S.P., Schauwecker, T., Weiher, E. 2001. Rarefaction does not eliminate the species richness-biomass relationship in calcareous blackland prairies. Journal of Vegetation Science, 12: 525532.CrossRefGoogle Scholar
Hodar, J. 1996. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecologica, 17: 421433.Google Scholar
Hoekstra, P.F., Braune, B.M., Elkin, B., Armstrong, F.A.J., Muir, D.C.G. 2003. Concentrations of selected essential and non-essential elements in Arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic. Science of the Total Environment, 309: 8192.CrossRefGoogle ScholarPubMed
Høye, T.Forchhammer, M. 2008a. The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations. BMC Ecology, 8: 8.CrossRefGoogle ScholarPubMed
Høye, T.T.Forchhammer, M. 2008b. Phenology of high-arctic arthropods: effects of climate on spatial, seasonal and inter-annual variation. Advances in Ecological Research, 40: 299324.CrossRefGoogle Scholar
Jarosik, V. 1989. Mass vs length relationship for Carabid beetles (Coleoptera, Carabidae). Pedobiologia, 33: 8790.Google Scholar
Lanier, G.N.Burns, B.W. 1978. Barometric flux. Journal of Chemical Ecology, 4: 139147 . doi:10.1007/bf00988050.CrossRefGoogle Scholar
Lassau, S.A., Hochuli, D.F., Cassis, G., Reid, C.A.M. 2005. Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Diversity and Distributions, 11: 7382 . doi:10.1111/j.1366-9516.2005.00124.x.CrossRefGoogle Scholar
Lawrence, M.A. 2011. Package “ez”: easy analysis and visualization of factorial experiments [online]. Available from http://cran.r-project.org/web/packages/ez/index.html [accessed 28 December 2012].Google Scholar
Leborgne, L., Ernst, C.M., Buddle, C.M. 2011. Shaping tomorrow's northern ecosystem: Arctic insects, spiders, and their relatives in a changing climate. Meridian, Spring/Summer 1317.Google Scholar
Lovei, G.L.Sunderland, K.D. 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41: 231256 . doi:10.1146/annurev.en.41.010196.001311.CrossRefGoogle ScholarPubMed
MacLean, S.F. Jr.Jensen, T.S. 1985. Food plant selection by insect herbivores in Alaskan Arctic tundra: the role of plant life form. Oikos, 44: 211221.CrossRefGoogle Scholar
Meltofte, H., Hoye, T.T., Schmidt, N.M., Forchhammer, M.C. 2007. Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biology, 30: 601606 . doi:10.1007/s00300-006-0219-1.CrossRefGoogle Scholar
Mjaaseth, R., Hagen, S., Yoccoz, N., Ims, R. 2005. Phenology and abundance in relation to climatic variation in a sub-arctic insect herbivore–mountain birch system. Oecologia, 145: 5365 . doi:10.1007/s00442-005-0089-1.CrossRefGoogle Scholar
Nelson, R.E. 2001. Bioclimatic implications and distribution patterns of the modern ground beetle fauna (Insecta: Coleoptera: Carabidae) of the Arctic slope of Alaska, USA. Arctic, 54: 425–430.CrossRefGoogle Scholar
Niemelä, J. 1993. Interspecific competition in ground-beetle assemblages (Carabidae): what have we learned? Oikos, 66: 325335.CrossRefGoogle Scholar
Noriega, J.A., Botero, J.P., Viola, M., Fagua, G. 2007. Seasonal dynamics of the trophic structure of an assemblage of Coleoptera in the Colombian Amazon. Revista Colombiana de Entomología, 33: 157164.Google Scholar
Odum, E.P. 1971. Fundamentals of ecology. W.B. Saunders, Philadelphia, Pennslyvania, United States of America.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., et al. 2010. Vegan: community ecology package [online]. Available from http://CRAN.R-project.org/package=vegan [accessed 17 December 2012].Google Scholar
Penney, M.M. 1966. Studies on certain aspects of the ecology of Nebria brevicollis (F.) (Coleoptera, Carabidae). Journal of Animal Ecology, 35: 505512.CrossRefGoogle Scholar
R Development Core Team. 2009. R: a language and environment for statistical computing, version 2.10.1 [online]. Available from http://www.r-project.org [accessed 17 December 2012].Google Scholar
Ring, R.A.Tesar, D. 1981. Adaptations to cold in Canadian arctic insects. Cryobiology, 18: 199211.CrossRefGoogle ScholarPubMed
Root, R.B. 1967. Niche exploitation pattern of blue–gray gnatchatcher. Ecological Monographs, 37: 317350.CrossRefGoogle Scholar
Root, R.B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs, 43: 95124.CrossRefGoogle Scholar
Rossi, J.-P. 2011. Rich: species richness estimation and comparison. Diversity, 3: 112120.CrossRefGoogle Scholar
Saint-Germain, M., Buddle, C.M., Larrivee, M., Mercado, A., Motchula, T., Reichert, E., et al. 2007. Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? Journal of Applied Ecology, 44: 330339 . doi:10.1111/j.1365-2664.2006.01269.x.CrossRefGoogle Scholar
Sanders, H.L. 1968. Marine benthic diversity: a comparative study. The American Naturalist, 102: 243282.CrossRefGoogle Scholar
Service, M. 1980. Effects of wind on the behaviour and distribution of mosquitoes and blackflies. International Journal of Biometeorology, 24: 347353 . doi:10.1007/bf02250577.CrossRefGoogle Scholar
Sovik, G., Leinaas, H.P., Ims, R.A., Solhoy, T. 2003. Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari, Oribatida) on the high arctic archipelago of Svalbard. Pedobiologia, 47: 257271 . doi:10.1078/0031-4056-00189.CrossRefGoogle Scholar
Strathdee, A.T.Bale, J.S. 1998. Life on the edge: insect ecology in Arctic environments. Annual Review of Entomology, 43: 85106.CrossRefGoogle ScholarPubMed
Strong, W., Zoltai, S.C., Working Group 1989. Ecoclimatic regions of Canada, first approximation. Sustainable Development Branch – Canadian Wildlife Service, Ottawa, Ontario, Canada.Google Scholar
Thórhallsdóttir, T.E. 1998. Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia, 114: 4349 . doi:10.1007/s004420050418.Google ScholarPubMed
Totland, Ø. 1994. Influence of climate, time of day and season, and flower density on insect flower visitation in alpine Norway. Arctic and Alpine Research, 26: 6671.CrossRefGoogle Scholar
Tulp, I.Schekkerman, H. 2008. Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic, 61: 4860.CrossRefGoogle Scholar
Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11: 13511363 . doi:10.1111/j.1461-0248.2008.01250.x.CrossRefGoogle ScholarPubMed
Van der Putten, W.H., Macel, M., Visser, M.E. 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B – Biological Sciences, 365: 20252034 . doi:10.1098/rstb.2010.0037.CrossRefGoogle ScholarPubMed
Wang, H., Morrison, W., Singh, A., Weiss, H. 2009. Modeling inverted biomass pyramids and refuges in ecosystems. Ecological Modelling, 220: 13761382.CrossRefGoogle Scholar