Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 112
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Aukema, Brian H. McKee, Fraser R. Wytrykush, Debra L. and Carroll, Allan L. 2016. Population dynamics and epidemiology of four species of Dendroctonus (Coleoptera: Curculionidae): 100 years since J.M. Swaine. The Canadian Entomologist, p. 1.


    Bentz, Barbara J. Duncan, Jacob P. and Powell, James A. 2016. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate. Forestry, Vol. 89, Issue. 3, p. 271.


    Bolshakova, Virginia L. J. and Evans, Edward W. 2016. Phenology of the Sagebrush Defoliating MothAroga websteri(Lepidoptera: Gelechiidae), With Application to Population Irruptions. Annals of the Entomological Society of America, Vol. 109, Issue. 3, p. 424.


    Esch, Evan D. Langor, David W. and Spence, John R. 2016. Gallery success, brood production, and condition of mountain pine beetles (Coleoptera: Curculionidae) reared in whitebark and lodgepole pine from Alberta, Canada. Canadian Journal of Forest Research, Vol. 46, Issue. 4, p. 557.


    Hartshorn, Jessica A. Haavik, Laurel J. Allison, Jeremy D. Meeker, James R. Johnson, Wood Galligan, Larry D. Chase, Kevin D. Riggins, John J. and Stephen, Fred M. 2016. Emergence of adult femaleSirex nigricornisF. andSirex noctilioF. (Hymenoptera: Siricidae) coincides with a decrease in daily minimum and maximum temperature. Agricultural and Forest Entomology, Vol. 18, Issue. 3, p. 206.


    McKee, Fraser R. and Aukema, Brian H. 2016. Seasonal Phenology and Life-History ofDendroctonus simplex(Coleoptera: Curculionidae) in the Great Lakes Region of North America. Environmental Entomology, p. nvw057.


    Novick, Kimberly A. Oishi, A. Christopher and Miniat, Chelcy Ford 2016. Cold air drainage flows subsidize montane valley ecosystem productivity. Global Change Biology,


    Tsai, Chih-Wei Young, Thomas Warren, Philip H. and Maltby, Lorraine 2016. Phenological responses of ash (Fraxinus excelsior) and sycamore (Acer pseudoplatanus) to riparian thermal conditions. Urban Forestry & Urban Greening, Vol. 16, p. 95.


    West, Daniel R. Briggs, Jennifer S. Jacobi, William R. and Negrón, José F. 2016. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains. Environmental Entomology, Vol. 45, Issue. 1, p. 127.


    Addison, Audrey Powell, James A. Bentz, Barbara J. and Six, Diana L. 2015. Integrating models to investigate critical phenological overlaps in complex ecological interactions: The mountain pine beetle-fungus symbiosis. Journal of Theoretical Biology, Vol. 368, p. 55.


    Anderegg, William R. L. Hicke, Jeffrey A. Fisher, Rosie A. Allen, Craig D. Aukema, Juliann Bentz, Barbara Hood, Sharon Lichstein, Jeremy W. Macalady, Alison K. McDowell, Nate Pan, Yude Raffa, Kenneth Sala, Anna Shaw, John D. Stephenson, Nathan L. Tague, Christina and Zeppel, Melanie 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, Vol. 208, Issue. 3, p. 674.


    Bentz, Barbara J. and Jönsson, Anna Maria 2015. Bark Beetles.


    Bentz, Barbara J. Boone, Celia and Raffa, Kenneth F. 2015. Tree response and mountain pine beetle attack preference, reproduction and emergence timing in mixed whitebark and lodgepole pine stands. Agricultural and Forest Entomology, Vol. 17, Issue. 4, p. 421.


    Chen, Huapeng Jackson, Peter L. Ott, Peter K. and Spittlehouse, David L. 2015. A spatiotemporal pattern analysis of potential mountain pine beetle emergence in British Columbia, Canada. Forest Ecology and Management, Vol. 337, p. 11.


    Chen, Huapeng and Jackson, Peter L. 2015. Spatiotemporal mapping of potential mountain pine beetle emergence – Is a heating cycle a valid surrogate for potential beetle emergence?. Agricultural and Forest Meteorology, Vol. 206, p. 124.


    Flower, Charles E. and Gonzalez-Meler, Miquel A. 2015. Responses of Temperate Forest Productivity to Insect and Pathogen Disturbances. Annual Review of Plant Biology, Vol. 66, Issue. 1, p. 547.


    Law, B.E. and Waring, R.H. 2015. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. Forest Ecology and Management, Vol. 355, p. 4.


    McKee, Fraser R. and Aukema, Brian H. 2015. Influence of temperature on the reproductive success, brood development and brood fitness of the eastern larch beetleDendroctonus simplexLeConte. Agricultural and Forest Entomology, Vol. 17, Issue. 1, p. 102.


    Moore, Melissa L. and Six, Diana L. 2015. Effects of Temperature on Growth, Sporulation, and Competition of Mountain Pine Beetle Fungal Symbionts. Microbial Ecology, Vol. 70, Issue. 2, p. 336.


    Pfammatter, Jesse A. and Raffa, Kenneth F. 2015. Do Phoretic Mites Influence the Reproductive Success ofIps grandicollis(Coleoptera: Curculionidae)?. Environmental Entomology, Vol. 44, Issue. 6, p. 1498.


    ×

TEMPERATURE-DEPENDENT DEVELOPMENT OF THE MOUNTAIN PINE BEETLE (COLEOPTERA: SCOLYTIDAE) AND SIMULATION OF ITS PHENOLOGY

  • Barbara J. Bentz (a1), Jesse A. Logan (a2) and Gene D. Amman (a1)
  • DOI: http://dx.doi.org/10.4039/Ent1231083-5
  • Published online: 01 May 2012
Abstract
Abstract

Temperature-dependent development of the egg, larval, and pupal life-stages of the mountain pine beetle (Dendroctonus ponderosae Hopkins) was described using data from constant-temperature laboratory experiments. A phenology model describing the effect of temperature on the temporal distribution of the life-stages was developed using these data. Phloem temperatures recorded in a beetle-infested lodgepole pine (Pinus contorta Douglas) were used as input to run the model. Results from model simulations suggest that inherent temperature thresholds in each life-stage help to synchronize population dynamics with seasonal climatic changes. This basic phenological information and the developed model will facilitate both research and management endeavors aimed at reducing losses in lodgepole pine stands caused by mountain pine beetle infestations.

Résumé

On trouvera ici la description du développement de l’oeuf, de la larve et de la nymphe sous l’influence de la température chez le Dendroctone du Pin ponderosa (Dendroctonus ponderosae Hopkins), description élaborée à la suite d’observations en laboratoire dans des conditions constantes de température. Les données ont également servi à construire un modèle de la phénologie de l’insecte qui tient compte de l’effet de la température sur la répartition temporelle des divers stades. Les températures du phloème enregistrées dans un Pin ponderosa infesté de coléoptères ont été intégrées au modèle. Les résultats des simulations indiquent que les seuils thermiques inhérents à chacun des stades contribuent à synchroniser la dynamique de la population avec les changements climatiques saisonniers. Cette information phénologique de base et le modèle que nous avons mis au point faciliteront les tentatives de recherche et d’aménagement entreprises dans le but de limiter, dans les forêts de Pins ponderosa, les pertes occasionnées par les infestations de dendroctones.

[Traduit par la rédaction]

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G.D. Amman 1973. Population changes of the mountain pine beetle in relation to elevation. Environ. Ent. 2(4): 541547.

J.A. Beal 1934. Relation of air and bark temperatures of infested ponderosae pines during subzero weather. J. econ. Ent. 27: 11321139.

A.A. Berryman 1972. Resistance of conifers to invasion by bark beetle-fungus associations. Bioscience 22(10): 598602.

W.E. Cole 1981. Some risks and causes of mortality in mountain pine beetle populations: A long-term analysis. Res. Popul. Ecol. 23(1): 116144.

D.A. Kramer , R.E. Stinner , and F.P. Hain . 1991. Time versus rate in parameter estimation of nonlinear temperature-dependent development models. Environ. Ent. 20: 484488.

T.O. Kvalseth 1985. Cautionary note about R2. Am. Statistician 39: 279285.

D.W. Langor 1989. Host effects on the phenology, development, and mortality of field populations of the mountain pine beetle. Can. Ent. 121: 149157.

J.A. Logan 1988. Toward an expert system for development of pest simulation models. Environ. Ent. 17(2): 359376.

J.A. Logan , and G.D. Amman . 1986. A distribution model for egg development in mountain pine beetle. Can. Ent. 118: 361372.

J.A. Logan , R.E. Stinner , R.L. Rabb , and J.S. Bacheler . 1979. A descriptive model for predicting spring emergence of Heliothis zea populations in North Carolina. Environ. Ent. 8: 141146.

J.A. Logan , D.J. Wolkind , S.C. Hoyt , and L.K. Tanigoshi . 1976. An analytical model for description of temperature dependent rate phenomenon in arthropods. Environ. Ent. 5: 11331140.

W.F. McCambridge 1974. Influence of low temperatures on attack, oviposition, and larval development of mountain pine beetle Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Ent. 106: 979984.

J.M. Powell 1967. A study of habitat temperatures of the bark beetle Dendroctonus ponderosae in lodgepole pine. Agric. Meteor. 4: 189201.

J. Régniere 1984. A method of describing and using the variability in development rates for the simulation of insect phenology. Can. Ent. 116: 13671376.

R.W. Reid 1962. Biology of the mountain pine beetle, Dendroctonus monticolae, in the east Kootenay region of British Columbia. I. Life cycle, brood development, and flight periods. Can. Ent. 94: 531538.

R.W. Reid 1963. Biology of the mountain pine beetle, Dendroctonus monticolae, in the east Kootenay region of British Columbia. III. Interactions between the beetle and its host, with emphasis on brood mortality and survival. Can. Ent. 95: 225238.

R.W. Reid , and H. Gates . 1970. Effect of temperature and resin on hatch of eggs of the mountain pine beetle (Dendroctonus ponderosae). Can. Ent. 102: 617622.

L. Safranyik , and H.S. Whitney . 1985. Development and survival of axenically reared mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), at constant temperatures. Can. Ent. 117: 185192.

P.J.H. Sharpe , G.L. Curry , D.W. DeMichele , and C.L. Cole . 1977. Distribution model of organisms development times. J. Theor. Biol. 66: 2128.

R.E. Stinner , G.D. Butler , J.S. Bacheler , and C. Tuttle . 1975. Simulation of temperature dependent development in population dynamic models. Can. Ent. 107: 11671174.

T.L. Wagner , H. Wu , P.J.H. Sharpe , and R.N. Coulson . 1984. Modeling distributions of insect development time: A literature review and application of the Weibull Function. Ann. ent. Soc. Am. 77: 475483.

H.S. Whitney , and O.J. Spanier . 1982. An improved method for rearing axenic mountain pine beetles. Can. Ent. 114: 10951100.

J.S. Yuill 1941. Cold hardiness of two species of bark beetle in California forests. J. econ. Ent. 34: 702709.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×