Skip to main content Accessibility help

Terrestrial arthropod abundance and phenology in the Canadian Arctic: modelling resource availability for Arctic-nesting insectivorous birds

  • Elise Bolduc (a1), Nicolas Casajus (a1), Pierre Legagneux (a1), Laura McKinnon (a1), H. Grant Gilchrist (a2), Maria Leung (a3), R.I. Guy Morrison (a2), Don Reid (a4), Paul A. Smith (a5), Christopher M. Buddle (a6) and Joël Bêty (a1)...


Arctic arthropods are essential prey for many vertebrates, including birds, but arthropod populations and phenology are susceptible to climate change. The objective of this research was to model the relationship between seasonal changes in arthropod abundance and weather variables using data from a collaborative pan-Canadian (Southampton, Herschel, Bylot, and Ellesmere Islands) study on terrestrial arthropods. Arthropods were captured with passive traps that provided a combined measure of abundance and activity (a proxy for arthropod availability to foraging birds). We found that 70% of the deviance in daily arthropod availability was explained by three temperature covariates: mean daily temperature, thaw degree-day, and thaw degree-day2. Models had an adjusted R2 of 0.29–0.95 with an average among sites and arthropod families of 0.67. This indicates a moderate to strong fit to the raw data. The models for arthropod families with synchronous emergence, such as Tipulidae (Diptera), had a better fit (average adjusted R2 of 0.80) than less synchronous taxa, such as Araneae (R2 = 0.60). Arthropod abundance was typically higher in wet than in mesic habitats. Our models will serve as tools for researchers who want to correlate insectivorous bird breeding data to arthropod availability in the Canadian Arctic.


Corresponding author

1Corresponding author (e-mail:


Hide All
Ale, S.B., Morris, D.W., Dupuch, A., Moore, D.E. 2011. Habitat selection and the scale of ghostly coexistence among Arctic rodents. Oikos, 120: 11911200 . doi:10.1111/j.1600-0706.2010.18933.x.
Arctic Climate Impact Assessment. 2004. Impacts of warming climate: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, United Kingdom.
Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 116 . doi:10.1046/j.1365-2486.2002.00451.x.
Berteaux, D., Humphries, M.M., Krebs, C.J., Lima, M., McAdam, A.G., Pettorelli, N., et al. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research, 32: 151158.
Both, C.Visser, M.E. 2001. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411: 296298.
Committee for Holarctic Shorebird Monitoring. 2004. Monitoring Arctic-nesting shorebirds: an international vision for the future. Wader Study Group Bulletin, 103: 25.
Danks, H.V. 1971. A note on the early season food of arctic migrants. Canadian Field-Naturalist, 85: 7172.
Danks, H.V. 1981. Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa, Canada.
Danks, H.V. 1992. Arctic insects as indicators of environmental change. Arctic, 45: 159166.
Danks, H.V.Oliver, D.R. 1972. Seasonal emergence of some high Arctic Chironomidae (Diptera). The Canadian Entomologist, 104: 661686.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105: 66686672 . doi:10.1073/pnas.0709472105.
Dickey, M.-H., Gauthier, G., Cadieux, M.-C. 2008. Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Global Change Biology, 14: 19731985 . doi:10.1111/j.1365-2486.2008.01622.x.
Efron, B.Tibshirani, R.J. 1993. An introduction to the bootstrap. In Monographs on statistics and applied probability. Edited by B. Raton. Chapman & Hall, London, United Kingdom. Pp. 413425.
Elton, C.S. 1927. Animal ecology. Macmillan Company, New York, United States of America.
Frazier, M.R., Huey, R.B., Berrigan, D. 2006. Thermodynamics constrains the evolution of insect population growth rates: “Warmer is better”. American Naturalist, 168: 512520 . doi:10.1086/506977.
Gauthier, G., Berteaux, D., Bêty, J., Tarroux, A., Therrien, J.-F., McKinnon, L., et al. 2011. The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecosystems. Ecoscience, 18: 223235 . doi:10.2980/18-3-3453.
Gauthier, G., Berteaux, D., Bêty, J., Tarroux, A., Therrien, J.F., McKinnon, L., et al. 2012. The Arctic tundra food web in a changing climate and the role of exchanges between ecosystems. Ecoscience, 18: 223235.
Goulson, D., Derwent, L.C., Hanley, M.E., Dunn, D.W., Abolins, S.R. 2005. Predicting calyptrate fly populations from the weather, and probable consequences of climate change. Journal of Applied Ecology, 42: 795804.
Gullan, P.J.Cranston, P.S. 2005. The insects: an outline of entomology. Blackwell Publishing, Oxford, United Kingdom.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 19651978 . doi:10.1002/joc.1276.
Hodar, J.A. 1996. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecologica, 17: 421433.
Hodkinson, I.D.Coulson, S.J. 2004. Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos, 106: 427431.
Hodkinson, I.D., Coulson, S.J., Webb, N.R., Block, W., Strathdee, A.T., Bale, J.S., et al. 1996. Temperature and the biomass of flying midges (Diptera: Chironomidae) in the high Arctic. Oikos, 75: 241248.
Hodkinson, I.D., Webb, N.R., Bale, J.S., Block, W., Coulson, S.J., Strathdee, A.T. 1998. Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on spitsbergen. Arctic and Alpine Research, 30: 306313.
Høye, T.T.Forchhammer, M.C. 2008. The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations [online]. BMC Ecology, 8. Available from [accessed 27 December 2012].
Høye, T.T., Post, E., Meltofte, H., Schmidt, N.M., Forchhammer, M.C. 2007. Rapid advancement of spring in the High Arctic. Current Biology, 17: R449R451.
Huey, R.B.Berrigan, D. 2001. Temperature, demography, and ectotherm fitness. The American Naturalist, 158: 204210.
Jenouvrier, S., Caswell, H., Barbraud, C., Holland, M., Stroeve, J., Weimerskirch, H. 2009. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences of the United States of America, 106: 18441847.
Klaassen, M., Lindstrom, A., Meltofte, H., Piersma, T. 2001. Ornithology – Arctic waders are not capital breeders. Nature, 413: 794794 . doi:10.1038/35101654.
MacLean, S.F. 1973. Life cycle and growth energetics of the Arctic Crane fly Pedicia hannai antenatta. Oikos, 24: 436443.
MacLean, S.F.Pitelka, F.A. 1971. Seasonal patterns of abundance of tundra arthropods near Barrow. Arctic, 24: 1940.
McCullagh, P.Nelder, J.A. 1989. Generalized linear models. Chapman and Hall, London, United Kingdom.
McKinnon, L., Picotin, M., Bolduc, E., Juillet, C., Bêty, J. 2012. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Canadian Journal of Zoology, 90: 961971 . doi:10.1139/z2012-064.
Meltofte, H.Høye, T.T. 2007. Reproductive response to fluctuating lemming density and climate of the long-tailed Skua Stercorarius longicaudus at Zackenberg, Northeast Greenland, 1996–2006. Dansk Orn Foren Tidsskr, 101: 109119.
Meltofte, H., Høye, T.T., Schmidt, N.M. 2008. Effects of food availability, snow and predation on breeding performance of waders at Zackenberg. In High-Arctic ecosystem dynamics in a changing climate. Edited by H. Meltofte, T.R. Christensen, B. Elberling, M.C. Forchammer, and M. Rasch. Elsevier Academic Press Inc., San Diego, California, United States of America. Pp. 325341.
Morrison, R.I.G., Davidson, N.C., Piersma, T. 2005. Transformations at high latitudes: why do red knots bring body stores to the breeding grounds? Condor, 107: 449457 . doi:10.1650/7614.
Pearce-Higgins, J.W. 2010. Using diet to assess the sensitivity of northern and upland birds to climate change. Climate Research, 45: 119130 . doi:10.3354/cr00920.
Pearce-Higgins, J.W.Yalden, D.W. 2004. Habitat selection, diet, arthropod availability and growth of a moorland wader: the ecology of European Golden Plover Pluvialis apricaria chicks. Ibis, 146: 335346.
Pearce-Higgins, J.W., Yalden, D.W., Dougall, T., Beale, C. 2009. Does climate change explain the decline of a trans-Saharan Afro-Palaearctic migrant? Oecologia, 159: 649659 . doi:10.1007/s00442-008-1242-4.
Pearce-Higgins, J.W., Yalden, D.W., Whittingham, M.J. 2005. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia, 143: 470476.
Picotin, M. 2008. Variation climatique, abondance d'arthropodes et phénologie de la reproduction chez deux espèces de limicoles nichant dans le haut ArctiqueMaster. Université du Québec à Rimouski, Rimouski, Québec, Canada.
Post, E., Forchhammer, M.C., Bret-Harte, M.S., Callaghan, T.V., Christensen, T.R., Elberling, B., et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science, 325: 13551358 . doi:10.1126/science.1173113.
Rogers, L.E., Buschbom, R.L., Watson, C.R. 1977. Length–weight relationships of shrub-steppe invertebrates. Annals of the Entomological Society of America, 70: 5153.
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., Pounds, J.A. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 5760.
Roy, D.B., Rothery, P., Moss, D., Pollard, E., Thomas, J.A. 2001. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology, 70: 201217.
Saether, B.-E. 1997. Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution, 12: 143149.
Sage, R.D. 1982. Wet and dry-weight estimates of insects and spiders based on length. American Midland Naturalist, 108: 407411.
Sample, B.E., Cooper, R.J., Greer, R.D., Withmore, R.C. 1993. Estimation of insect biomass by length and width. American Midland Naturalist, 129: 234240.
Schekkerman, H., Tulp, I., Calf, K.M., de Leeuw, J.J. 2004. Studies on breeding shorebirds at Medusa Bay, Taimyr, in summer 2002 [online]. In Alterra report 922. Alterra, Wageningen, The Netherlands. Available from [accessed 30 December 2012].
Schekkerman, H., Tulp, I., Piersma, T., Visser, G.H. 2003. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia, 134: 332342.
Smith, P.A., Gilchrist, G.H., Smith, J.N.M. 2007. Effects of nest habitat, food, and parental behavior on shorebird nest success. The Condor, 109: 1531 . doi:10.1650/0010-5422(2007)109[15:eonhfa];2.
Strathdee, A.T., Bale, J.S., Block, W.C., Coulson, S.J., Hodkinson, I.D., Webb, N.R. 1993. Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Oecologia, 96: 457465.
Thomas, D.W., Blondel, J., Perret, P., Lambrechts, M.M., Speakman, J.R. 2001. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science, 291: 25982600.
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., et al. 2004. Extinction risk from climate change. Nature, 427: 145148 . doi:10.1038/nature02121.
Tulp, I. 2007. The Arctic pulse, timing of breeding in long-distance migrant shorebirds [online]. Ph.D. thesis, University of Groningen. Available from [accessed 30 December 2012].
Tulp, I.Schekkerman, H. 2001. Studies on breeding shorebirds at Medusa Bay, Taimyr, in summer 2001 [online]. In Alterra report 451. Alterra, Wageningen, The Netherlands. Available from [accessed 30 December 2012].
Tulp, I.Schekkerman, H. 2008. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic, 61: 4860.
Visser, M.E. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B – Biological Sciences, 275: 649659 . doi:10.1098/rspb.2007.0997.
Wagner, T.L., Olson, R.L., Willers, J.L. 1991. Modeling arthropod development time. Journal of Agricultural Entomology, 8: 251270.
Whittaker, J.B.Tribe, N.P. 1998. Predicting numbers of an insect (Neophilaenus lineatus: Homoptera) in a changing climate. Journal of Animal Ecology, 67: 987991.
Wigglesworth, V.B. 1972. The principles of insect physiology. Chapman and Hall, London, United Kingdom.

Related content

Powered by UNSILO

Terrestrial arthropod abundance and phenology in the Canadian Arctic: modelling resource availability for Arctic-nesting insectivorous birds

  • Elise Bolduc (a1), Nicolas Casajus (a1), Pierre Legagneux (a1), Laura McKinnon (a1), H. Grant Gilchrist (a2), Maria Leung (a3), R.I. Guy Morrison (a2), Don Reid (a4), Paul A. Smith (a5), Christopher M. Buddle (a6) and Joël Bêty (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.