Skip to main content
×
×
Home

Biflatness and Pseudo-Amenability of Segal Algebras

  • Ebrahim Samei (a1), Nico Spronk (a2) and Ross Stokke (a3)
Abstract

We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, L 1(G), and the Fourier algebra, A(G), of a locally compact group G.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Biflatness and Pseudo-Amenability of Segal Algebras
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Biflatness and Pseudo-Amenability of Segal Algebras
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Biflatness and Pseudo-Amenability of Segal Algebras
      Available formats
      ×
Copyright
References
Hide All
[1] Aristov, O. Y., Runde, V., and Spronk, N., Operator biflatness of the Fourier algebra and approximate indicators for subgroups. J. Funct. Anal. 209(2004), no. 2, 367–387. doi:10.1016/S0022-1236(03)00169-1
[2] Burnham, J. T., Closed ideals in subalgebras of Banach algebras. I. Proc. Amer. Math. Soc. 32(1972), 551–555. doi:10.2307/2037857
[3] Curtis, P. C., Loy, R. J., The structure of amenable Banach algebras. J. London Math. Soc. (2) 40(1989), no. 1, 89–104. doi:10.1112/jlms/s2-40.1.89
[4] Dales, H. G., Banach algebras and automatic continuity. London Mathematical Society Monographs, 24, The Clarendon Press, Oxford University Press, New York, 2000.
[5] Dales, H. G., Ghahramani, F., and Helemskii, A. Ya., The amenability of measure algebras. J. London Math. Soc. (2) 66(2002), no. 1, 213–226. doi:10.1112/S0024610702003381
[6] Effros, E. G. and Ruan, Z.-J., Operator spaces. London Mathematical Society Monographs, 23, The Clarendon Press, Oxford University Press, New York, 2000.
[7] Eymard, P., L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France 92(1964), 181–236.
[8] Forrest, B. and Wood, P., Cohomology and the operator space structure of the Fourier algebra and its second dual. Indiana Univ. Math. J. 50(2001), no. 3, 1217–1240. doi=10.1512/iumj.2001.50.1835
[9] Forrest, B. E. and Runde, V., Amenability and weak amenability of the Fourier algebra. Math. Z. 250(2005), 731–744. doi:10.1007/s00209-005-0772-2
[10] Forrest, B. E., Spronk, N., and Wood, P. J., Operator Segal algebras in Fourier algebras. Studia Math. 179(2007), no. 3, 277–295. doi:10.4064/sm179-3-5
[11] Ghahramani, F. and Lau, A. T.-M., Weak amenability of certain classes of Banach algebras without bounded approximate identities. Math. Proc. Cambridge Philos. Soc. 133(2002), no. 2, 357–371. doi=10.1017/S0305004102005960
[12] Ghahramani, F. and Lau, A. T.-M., Approximate weak amenability, derivations and Arens regularity of Segal algebras. Studia Math.169(2005), no. 2, 189–205. doi:10.4064/sm169-2-6
[13] Ghahramani, F. and Loy, R. J., Generalized notions of amenability. J. Funct. Anal. 208(2004), no. 1, 229–260. doi:10.1016/S0022-1236(03)00214-3
[14] Ghahramani, F. and Stokke, R., Approximate and pseudo-amenability of the Fourier algebra. Indiana Univ. Math. J. 56(2007), no. 2, 909–930. doi:10.1512/iumj.2007.56.2951
[15] Ghahramani, F. and Zhang, Y., Pseudo-amenable and pseudo-contractible Banach algebras. Math. Proc. Cambridge Philos. Soc. 142(2007), no. 1, 111–123. doi:10.1017/S0305004106009649
[16] Helemskii, A. Ya., Banach and locally convex algebras. The Clarendon Press, Oxford University Press, New York, 1993.
[17] Johnson, B. E., Cohomology in Banach algebras. Memoirs of the American Mathematical Society, 127, American Mathematical Society, Providence, RI, 1972.
[18] Johnson, B. E., Approximate diagonals and cohomology of certain annihilator Banach algebras. Amer. J. Math. 94(1972), 685–698. doi:10.2307/2373751
[19] Johnson, B. E., Non-amenability of the Fourier algebra of a compact group. J. London Math. Soc. (2) 50(1994), no. 2, 361–374.
[20] Kelley, J. L., General topology. D. Van Nostrand Company, Inc., Toronto–New York–London, 1955.
[21] Kotzmann, E. and Rindler, H., Segal algebras on non-abelian groups. Trans. Amer. Math. Soc. 237(1978), 271–281. doi:10.2307/1997622
[22] Paterson, A. L. T., Amenability. Mathematical Surveys and Monographs, 29, American Mathematical Society, Providence, RI, 1988.
[23] Pirkovskii, A. Yu., Approximate characterizations of projectivity and injectivity for Banach modules. Math. Proc. Cambridge Philos. Soc. 143(2007), no. 2, 375–385. doi=10.1017/S0305004107000163
[24] Pisier, G., Introduction to operator space theory. London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003.
[25] Renaud, P. F., Invariant means on a class of von Neumann algebras. Trans. Amer. Math. Soc. 170(1972), 285–291. doi:10.2307/1996311
[26] Reiter, H. and Stegeman, J. D., Classical Harmonic Analysis and locally compact groups. Second ed., London Mathematical Society Monographs, 22, The Clarendon Press, Oxford University Press, New York, 2000.
[27] Ruan, Z.-J., The operator amenability of A(G). Amer. J. Math. 117(1995), no. 6, 1449–1474. doi:10.2307/2375026
[28] Ruan, Z.-J., Connes-amenability and normal, virtual diagonals for measure algebras. I. J. London Math. Soc. (2) 67(2003), no. 3, 643–656. doi:10.1112/S0024610703004125
[29] Spronk, N., Operator space structure on Feichtinger's Segal algebra. J. Funct. Anal. 248(2007), no. 1, 152–174. doi:10.1016/j.jfa.2007.03.028
[30] Takesaki, M. and Tatsuuma, N., Duality and subgroups. II. J. Funct. Anal. 11(1972), 184–190. doi:10.1016/0022-1236(72)90087-0
[31] Wood, P. J., The operator biprojectivity of the Fourier algebra. Canad. J. Math. 54(2002), no. 5, 1100–1120.
[32] Zhang, Y., Nilpotent ideals in a class of Banach algebras. Proc. Amer. Math. Soc. 127(1999), no. 11, 3237–3242. doi:10.1090/S0002-9939-99-04896-0
[33] Zhang, Y., Approximate identities for ideals of Segal algebras on a compact group. J. Funct. Anal. 191(2002), no. 1, 123–131. doi:10.1006/jfan.2001.3872
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed