Skip to main content

Existence of Taut Foliations on Seifert Fibered Homology 3-spheres

  • Shanti Caillat-Gibert (a1) and Daniel Matignon (a1)

This paper concerns the problem of existence of taut foliations among 3-manifolds. From the work of David Gabai we know that a closed 3-manifold with non-trivial second homology group admits a taut foliation. The essential part of this paper focuses on Seifert fibered homology 3-spheres. The result is quite different if they are integral or rational but non-integral homology 3-spheres. Concerning integral homology 3-spheres, we can see that all but the 3-sphere and the Poincaré 3-sphere admit a taut foliation. Concerning non-integral homology 3-spheres, we prove there are infinitely many that admit a taut foliation, and infinitely many without a taut foliation. Moreover, we show that the geometries do not determine the existence of taut foliations on non-integral Seifert fibered homology 3-spheres.

Hide All
[1] Brittenham, M., Essential laminations in Seifert-fibered spaces. Topology 32(1993), no. 1, 6185.
[2] Brittenham, M., Naimi, R., and Roberts, R., Graph manifolds and taut foliations. J. Differential Geom. 45(1997), no. 3, 446470.
[3] Caillat-Gibert, S. and Matignon, D., Compact leaves in Reebless or taut foliations. arxiv:1105.3103v2
[4] Calegari, D., Promoting essential laminations. Invent. Math. 166(2006), no. 3, 583643.
[5] Clauss, E., Essential laminations in closed Seifert-fibered spaces. Thesis, University of Texas at Austin, 1991.
[6] Eisenbud, D., Hirsch, U., and Neumann, W., Transverse foliations on Seifert bundles and self-homeomorphisms of the circle. Comment. Math. Helvetici 56(1981), no. 4, 638660.
[7] Eliashberg, Y. and Thurston, W. P., Confoliations. University Lecture Series, 13, American Mathematical Society, Providence, RI, 1998.
[8] Epstein, D. B. A., Periodic flows on three-manifolds. Ann. of Math. 95(1972), 6682.
[9] Gabai, D., Foliations and the topology of 3-manifolds. J. Differential Geometry. 18(1983), no. 3, 445503.
[10] Jankins, M. and Neumann, W., Rotation numbers of products of circle homeomorphisms. Math. Ann. 271(1985), no. 3, 381400.
[11] Levitt, G., Feuilletages des variétés de dimension 3 qui sont des fibres en cercles. Comment. Math. Helv. 53(1978), no. 4, 572594.
[12] Lisca, P. and Matić, G., Transverse contact structures on Seifert 3-manifolds. Algebr. Geom. Topol. 4(2004), 11251144.
[13] Lisca, P. and Stipsicz, A. I., Ozsváth-Szabó invariants and tight contact 3-manifolds, III. J. Symplectic Geom. 5(2007), no. 4, 357384.
[14] Matsumoto, S., Foliations of Seifert-fibered spaces over S2. In: Foliations (Tokyo, 1983), Adv. Stud. Pure Math., 5, North-Holland, Amsterdam, 1985, pp. 325339.
[15] Naimi, R., Foliations transverse to fibers of Seifert manifolds. Comment. Math. Helv. 69(1994), no. 1, 155162.
[16] Novikov, S. P., Foliations of codimension 1 on manifolds. (Russian) Dokl. Akad. Nauk SSSR 155(1964), 10101013.
[17] Palmeira, C., Open manifolds foliated by planes. Ann. Math. 107(1978), no. 1, 109131.
[18] Rustamov, R., On Heegard Floer homology of three-manifolds. Ph.D. Dissertation, Princeton University, 2005. arxiv:math/0505349
[19] Roberts, R., Shareshian, J., and Stein, M., Infinitely many hyperboloic 3-manifolds which contain no Reebless foliation. J. Amer. Math. Soc. 16(2003), no. 3, 639679.
[20] Saveliev, N., Invariants for homology 3-spheres. In: Encyclopaedia of Mathematical Sciences, 140, Low-Dimensional Topology, I, Springer-Verlag, Berlin, 2002.
[21] Scott, P., The geometry of 3-manifolds. Bull. London Math. Soc. 15(1983), no. 5, 401487.
[22] Seifert, H., Topologie dreidimensionaler gefaserter Raume. Acta Math. 60(1933), no. 1, 147238.
[23] Seifert, H. and Threlfall, W., Topology of 3-dimensional fibered spaces. Pure and Applied Mathematics, 89, Academic Press, 1980, pp. 360418.
[24] Thurston, W. P., Foliations of 3-manifolds which are circle bundles. Thesis, University of California at Berkeley, 1972.
[25] Waldhausen, F., Eine classe von 3-dimensionalen mannigfaltigkeiten I. Invent. Math. 3(1967), 308333.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed