We investigate left conjugacy closed loops which can be given by invariant sections in the group generated by their left translations. These loops are generalizations of the conjugacy closed loops introduced in [13] just as Bol loops generalize Moufang loops. The relations of these loops to common classes of loops are studied. For instance on a connected manifold we construct proper topological left conjugacy closed loops satisfying the left Bol condition but show that any differentiable such loop must be a group. We show that the configurational condition in the 3-net corresponding to an isotopy class of left conjugacy closed loops has the same importance in the geometry of 3-nets as the Reidemeister or the Bol condition.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.