Let C be an arbitrary Grothendieck site. The purpose of this note is to show that, with the closed model structure on the category S Pre(C) of simplicial presheaves in hand, it is a relatively simple matter to show that the category S Pre(C)stab of presheaves of spectra (of simplicial sets) satisfies the axioms for a closed model category, giving rise to a stable homotopy theory for simplicial presheaves. The proof is modelled on the corresponding result for simplicial sets which is given in [1], and makes direct use of their Theorem A.7.
This result gives a precise description of the associated stable homotopy category Ho(S Pre(C))stab, according to well known results of Quillen [6]. One will recall, however, that it is preferable to have several different descriptions of the stable homotopy category, for the construction of smash products and the like.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.