Skip to main content Accessibility help
×
Home

Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)

  • A. Grothendieck (a1)

Extract

Soit K un espace compact, C(K) l'espace des fonctions complexes continues sur K, muni de la norme uniforme, son dual (espace des mesures de Radon sur K). Cet article est consacré essentiellement à l'étude des applications linéaires faiblement compactes de C(K) dans des espaces localement convexes F quelconques i.e. les applications linéaires qui transforment la boule unité de C(K) en une partie faiblement relativement compacte de F.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)
      Available formats
      ×

Copyright

References

Hide All
1. Banach, S., Théorie des opérations linéaire (Varsovie, 1932).
2. Bourbaki, N., Algébre (Actualitiés sci. et industr., Paris, 1948), Chap. 3.
3. Dieudonné, J. et Schwartz, L., La dualité dans les espaces () et (), Annales de Grenoble, 1 (1949), 61101.
4. Dieudonné, J., Sur les espaces de Köthe, Journal d'Analyse Mathématique, 1 (Jérusalem, 1951), 81115.
5. Dieudonné, J., Sur la convergence des suites de mesures de Radon, Anais da Acad. Bras. Ciencias, 23 (1951), 2138.
6. Dunford, N., Uniformity in linear spaces, Trans. Amer. Math. Soc, 44 (1938), 305356; in particular, Theorems 60, 75.
7. Dunford, N. et Pettis, J., Linear transformations on summable fonctions, Trans. Amer. Math. Soc, 47 (1940), 323392.
8. Grothendieck, A., Critéres dénombrables de compacité dans les espaces fonctionnels générauxt, Amer. J. Math., 74 (1952), 168186.
9. Grothendieck, A.,Critéres généraux de compacité dans les espaces localement convexes généraux, C. R. Acad. Sci., Paris, 231 (1950), p. 217240.
10. Grothendieck, A., Sur une notion de produit tensoriel topologique d'espaces vectoriels topologiques, C. R. Acad. Sci., Paris, 233 (1951), 15561558.
11. Kakutani, S., Concrete representation of abstract (L)-spaces, Ann. Math., 42 (1941), 523537.
12. Nachbin, L., A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc, 68 (1950), 2846.
13. Philipps, R., On linear transformations, Trans. Amer. Math. Soc, 48 (1940), 525.
14. Stone, M., Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc, 41 (1937), 375481.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed