Skip to main content Accessibility help
×
Home

Translation Groupoids and Orbifold Cohomology

  • Dorette Pronk (a1) and Laura Scull (a2)
  • Please note a correction has been issued for this article.

Abstract

We show that the bicategory of (representable) orbifolds and good maps is equivalent to the bicategory of orbifold translation groupoids and generalized equivariant maps, giving a mechanism for transferring results from equivariant homotopy theory to the orbifold category. As an application, we use this result to define orbifold versions of a couple of equivariant cohomology theories: $K$ -theory and Bredon cohomology for certain coefficient diagrams.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Translation Groupoids and Orbifold Cohomology
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Translation Groupoids and Orbifold Cohomology
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Translation Groupoids and Orbifold Cohomology
      Available formats
      ×

Copyright

References

Hide All
[1] Adem, A., Leida, J., and Ruan, Y., Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics 171, Cambridge University Press, Cambridge 2007.
[2] Adem, A. and Ruan, Y., Twisted orbifold K-theory. Comm. Math. Phys. 237(2003), no. 3, 533–556.
[3] Bredon, G., Equivariant Cohomology Theories. Lecture Notes in Mathematics 34. Springer-Verlag, Berlin, 1967.
[4] Chen, W. and Ruan, Y., A new cohomology theory of orbifold. Comm. Math. Phys. 248(2004), no.1, 1–31.
[5] Haefliger, A., Groupöıdes d’holonomie et classifiants. Astérisque No. 116(1984), 70–97.
[6] Honkasalo, H., Equivariant Alexander-Spanier cohomology for actions of compact Lie groups. Math. Scand. 67(1990), no. 1, 23–34.
[7] Henriques, A. and Metzler, D., Presentations of noneffective orbifolds. Trans. Amer. Math. Soc. 356(2004), no. 6, 2481–2499. doi:10.1090/S0002-9947-04-03379-3.
[8] Hilsum, M. and Skandalis, G., Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’aprés une conjecture d’A. Connes). Ann. Sci. École Norm. Sup. 20(1987), no. 3, 325–390.
[9] Lupercio, E. and Uribe, B., Gerbes over orbifolds and twisted K-theory,. Comm. Math. Phys. 245(2004), no. 3, 449–489. doi:10.1007/s00220-003-1035-x
[10] May, J. P., Equivariant Homotopy and Cohomology Theory. CB MS Regional Conference Series in Mathematics 91. American Mathematical Society, Providence, RI, 1996.
[11] Moerdijk, I., The classifying topos of a continuous groupoid. I. Trans. Amer. Math. Soc. 310(1988), no. 2, 629–668. doi:10.2307/2000984
[12] Moerdijk, I., Orbifolds as groupoids: an introduction. In: Orbifolds in Mathematics and Physics. Contemp. Math. 310. American Mathematical Society, Providence, RI, 2002, pp. 205–222.
[13] Moerdijk, I. and Mrčun, J., Lie groupoids, sheaves and cohomology. In: Poisson Geometry, Deformation Quantisation and Group Representations. London Math. Soc. Lecture Note Ser. 323. Cambridge University Press, Cambridge, 2005, pp. 145–272.
[14] Moerdijk, I., and Pronk, D. A., Orbifolds, sheaves and groupoids. K-Theory 12(1997), no. 1, 3–21. doi:10.1023/A:1007767628271
[15] Moerdijk, I., and Svensson, J. A., A Shapiro lemma for diagrams of spaces with applications to equivariant topology. Compositio Math. 96(1995), no. 3, 249–282.
[16] Mrčun, J., Functoriality of the bimodule associated to a Hilsum-Skandalis map. K-Theory 18(1999),no. 3, 235–253. doi:10.1023/A:1007773511327
[17] Pradines, J., Morphisms between spaces of leaves viewed as fractions. Cahiers Topologie Géom. Différentielle Catég. 30(1989), no. 3, 229–246.
[18] Pronk, D. A., Groupoid Representations for Sheaves on Orbifolds, Ph.D. thesis, Utrecht, 1995.
[19] Pronk, D. A., Etendues and stacks as bicategories of factions. Compositio Math. 102(1996), no. 3, 243–303.
[20] Satake, I., On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A. 42(1956), 359–363. doi:10.1073/pnas.42.6.359
[21] Satake, I., The Gauss-Bonnet theorem for V-manifolds. J. Math. Soc. Japan 9(1957), 464–492.
[22] Segal, G. B., Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. No. 34(1968), 129–151.
[23] Willson, S. J., Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc. 212(1975), 155–271. doi:10.2307/1998619
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Translation Groupoids and Orbifold Cohomology

  • Dorette Pronk (a1) and Laura Scull (a2)
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: