Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-s8qdg Total loading time: 0.209 Render date: 2021-09-28T06:49:30.994Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Ward’s Solitons II: Exact Solutions

Published online by Cambridge University Press:  20 November 2018

Christopher Kumar Anand*
Affiliation:
Département de Mathématiques, Université de Bretagne Occidentale, 6, avenue le Gorgeu, B.P. 452, 29275 Brest, France email: Christopher.Anand@univ-brest.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a previous paper, we gave a correspondence between certain exact solutions to a (2 + 1)-dimensional integrable Chiral Model and holomorphic bundles on a compact surface. In this paper, we use algebraic geometry to derive a closed-form expression for those solutions and show by way of examples how the algebraic data which parametrise the solution space dictates the behaviour of the solutions.

Résumé

Résumé

Dans un article précédent, nous avons démontré que les solutions d’un modèle chiral intégrable en dimension (2 + 1) correspondent aux fibrés vectoriels holomorphes sur une surface compacte. Ici, nous employons la géométrie algébrique dans une construction explicite des solutions. Nous donnons une formule matricielle et illustrons avec trois exemples la signification des invariants algébriques pour le comportement physique des solutions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1998

References

[An95] Anand, C.K., Uniton Bundles. Comm. Anal. Geom. 3(1995), 371419.Google Scholar
[An97] Anand, C.K., Ward's Solitons. Geom. Topol. 1(1997), 920. http://www.maths.warwick.ac.uk/gt/GTVol1/paper2.abs.html Google Scholar
[An98] Anand, C.K., A closed form for unitons. J. Math. Soc. Japan (to appear). http://gauss.univ-brest.fr/anand Google Scholar
[Do] Donaldson, S.K., Instantons and Geometric Invariant Theory. Comm.Math. Phys. 93(1984), 453460.Google Scholar
[Hi] Hitchin, N.J., Monopoles and Geodesics. Comm.Math. Phys. 83(1982), 579602.Google Scholar
[Hu] Hurtubise, J.C., Instantons and Jumping Lines. Comm.Math. Phys. 105(1986), 107122.Google Scholar
[Io] Ioannidou, T., Soliton Solutions and Nontrivial Scattering in an Integrable Chiral Model in (2 + 1) Dimensions. J. Math. Phys. 37(1996), 3422.ndash;3441.Google Scholar
[OSS] Okonek, C., Schneider, M. and Spindler, H., Vector bundles on complex projective spaces. Birkhauser, Boston, 1980.Google Scholar
[Su] Sutcliffe, P.M., Nontrivial soliton scattering in an integrable chiral model in (2+1)-dimensions. J. Math. Phys. 33(1992), 2269.ndash;2278.Google Scholar
[Wa90] Ward, R.S., Classical Solutions of the Chiral Model, Unitons, and Holomorphic Vector Bundles. Commun. Math. Phys. 123(1990), 319332.Google Scholar
[Wa95] Ward, R.S., Nontrivial scattering of localised solitons in a (2 + 1)-dimensional integrable system. Phys. Lett. A 208(1995), 203208.Google Scholar
You have Access
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ward’s Solitons II: Exact Solutions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ward’s Solitons II: Exact Solutions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ward’s Solitons II: Exact Solutions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *