Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-ct24h Total loading time: 0.344 Render date: 2022-05-20T02:21:06.011Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Neuroprotection in Acute Ischemic Stroke: A Brief Review

Published online by Cambridge University Press:  16 September 2021

Alastair M. Buchan
Affiliation:
Radcliffe Department of Medicine, University of Oxford, Oxford, UK Corpus Christi College, University of Oxford, Oxford, UK Oxford in Berlin, University of Oxford, Oxford, UK
David M. Pelz*
Affiliation:
Departments of Medical Imaging and Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
*
Correspondence to: David M. Pelz, University Hospital, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A5A5, Canada. Email: pelz@uwo.ca

Abstract:

The goal of effective neuroprotection in acute ischemic stroke remains elusive. Despite decades of experimental preclinical and clinical experience with innumerable agents, no strategy has proven to be beneficial in humans. As endovascular therapies mature and approach the limits of speed and efficacy, neuroprotection will become the next frontier of acute stroke care. This review will briefly summarize the history, preclinical and clinical triumphs and failures, and future directions of cerebral neuroprotection.

Résumé :

RÉSUMÉ :

Survol de la neuroprotection dans le contexte de l’accident vasculaire cérébral ischémique aigu.

L’efficacité de la neuroprotection dans l’accident vasculaire cérébral (AVC) ischémique aigu s’est montrée jusqu’à maintenant difficile à atteindre. Malgré des décennies de recherche expérimentale préclinique et clinique à l’aide de nombreux agents thérapeutiques, aucune stratégie ne s’est avérée efficace chez l’être humain. À mesure que les traitements endovasculaires progressent et frisent les limites de la rapidité d’intervention et de l’efficacité, la neuroprotection se dresse comme la prochaine frontière à repousser en ce qui concerne les soins de l’AVC aigu. Aussi ferons-nous un bref historique de la neuroprotection cérébrale, de ses victoires et de ses échecs précliniques et cliniques, et présenterons-nous les nouvelles orientations en la matière.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Canadian Journal of Neurological Sciences Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goyal, M, Menon, BK, van Zwam, WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomized trials. Lancet. 2016;387:1723–31.CrossRefGoogle Scholar
Hill, MD, Goyal, M, Menon, B, et al. Efficacy and safety of nerinetide for the treatment of acute ischemic stroke (ESCAPE NA-1): a multicenter, double-blind, randomized controlled trial. Lancet. 2020;395:878–87.CrossRefGoogle Scholar
Karsy, M, Brock, A, Guan, J, Taussky, P, Kalani, MY, Park, MS. Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke. Neurosurg Focus. 2017;42:E3.CrossRefGoogle ScholarPubMed
Bigelow, WG, Lindsay, WK, Greenwood, WF. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg. 1950;132:849–66.CrossRefGoogle ScholarPubMed
Botterell, EH, Lougheed, WM, Scott, JW, Vandewater, SL. Hypothermia, and interruption of carotid, or carotid and vertebral circulation, in the surgical management of intracranial aneurysms. J Neurosurg. 1956;13:142.CrossRefGoogle ScholarPubMed
Spielmayer, W. Zur pathogenese ortlich elektiver grehirnveranderungen. Z Gesamte Neurol Psy. 1925;99:756–76.CrossRefGoogle Scholar
Pulsinelli, WA, Brierly, JB, Plum, F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11:491–98.CrossRefGoogle Scholar
Symon, L, Branston, M, Strong, AJ, Hope, TD. The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Path Suppl (R Coll Pathol). 1977;11:149–54.CrossRefGoogle ScholarPubMed
Hakim, AM. The cerebral ischemic penumbra. Can J Neurol Sci. 1987;14:557–59.Google ScholarPubMed
Rothman, SM, Olney, JW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol. 1986;19:105–11.CrossRefGoogle ScholarPubMed
Siesjo, BK, Agardh, CD, Bengtsson, F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev. 1989;1:165211.Google ScholarPubMed
Belayev, L, Liu, Y, Zhao, W, Busto, R, Ginsberg, MD. Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke. 2001;32:553–60.CrossRefGoogle ScholarPubMed
Savitz, SI, Baron, JC, Fisher, M, et al. Stroke treatment academic industry roundable X: brain cytoprotection therapies in the reperfusion era. Stroke. 2019;50:1026–31.CrossRefGoogle ScholarPubMed
Rajah, GB, Ding, Y. Experimental neuroprotection in ischemic stroke: a concise review. Neurosurg Focus. 2017;42:E2.Google ScholarPubMed
Davis, SM, Lees, KR, Albers, GW, et al. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke. 2000;31:347–54.CrossRefGoogle ScholarPubMed
Krams, M, Lees, KR, Hacke, W, Grieve, AP, Orgogozo, J-M, Ford, GA. Acute stroke therapy by inhibition of neutrophils (ASITN). Stroke. 2003;34:2543–48.CrossRefGoogle Scholar
Babadjouni, RM, Walcott, BP, Liu, Q, Tenser, MS, Amar, AP, Mack, WJ. Neuroprotective delivery platforms as an adjunct to mechanical thrombectomy. Neurosurg Focus. 2017;42:E4.CrossRefGoogle ScholarPubMed
Chamorro, A, Dirnagl, U, Urra, X, Planas, AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15:869–81.CrossRefGoogle ScholarPubMed
Chamorro, A, Lo, EH, Renu, K, van Leyden, K, Lyden, PD. The future of neuroprotection in stroke. J Neurol Neurosurg Psychiatry. 2021;92:129–13.CrossRefGoogle ScholarPubMed
Karnatovskaia, LV, Wartenberg, KE, Freeman, WD. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. The Neurohospitalist. 2014;4:153–63.CrossRefGoogle ScholarPubMed
Wu, L, Wu, D, Yang, T, Xu, J, Chen, J, et al. Hypothermic neuroprotection against acute ischemic stroke: the 2019 update. J Cereb Blood Flow Metab. 2020;40:461–81.CrossRefGoogle ScholarPubMed
van der Worp, HB, Sena, ES, Donnan, GA, et al. Hypothermia in animal models of acute ischemic stroke: a systematic review and meta-analysis. Brain. 2007;130:3063–74.CrossRefGoogle Scholar
Dumitrascu, O, Lamb, J, Lyden, P. Still cooling after all these years: Meta-analysis of pre-clinical trials of therapeutic hypothermia for acute ischemic stroke. J Cereb Blood Flow Metab. 2016;36:1157–64.CrossRefGoogle ScholarPubMed
De Georgia, MA, Krieger, DW, Abou-Chebl, A, et al. Cooling for acute ischemic brain damage (COOLAID): a feasibility trial of endovascular cooling. Neurology. 2004;63:312–17.CrossRefGoogle Scholar
Hemmen, TM, Raman, R, Guluma, KZ, Meyer, BC, Gomez, JA, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke. 2010;41:2265–70.CrossRefGoogle ScholarPubMed
Horn, CM, Sun, CH, Nogueira, RG, et al. Endovascular reperfusion and cooling in cerebral acute ischemia (ReCCLAIM I). J Neurointervent Surg. 2014;6:9195.CrossRefGoogle Scholar
Gupta, R, Jumaa, M, Badjatia, N, Yoo, A. Update on the reperfusion with cooling in cerebral acute ischemia II (ReCCLAIM II) trial. J Neurointervent Surg. 2021;13:A28.CrossRefGoogle Scholar
van der Worp, HB, McLeod, MR, Bath, PM, et al. Therapeutic hypothermia for acute ischaemic stroke. results of a European multicenter, randomized, phase III clinical trial. Eur Stroke J. 2019;4:254–62.CrossRefGoogle Scholar
Kuczynski, AM, Marzoughi, S, Al Sultan, AS, et al. Therapeutic hypothermia in acute ischemic stroke – a systematic review and Meta-Analysis. Curr Neurology and Neuroscience Rep. 2020;20:114.Google ScholarPubMed
Cattaneo, G, Meckel, S. Review of selective brain hypothermia in acute ischemic stroke therapy using an intracarotid, closed-loop cooling catheter. Brain Circ. 2019;5:211–17.CrossRefGoogle ScholarPubMed
Lougheed, WM, Kahn, DS. Circumvention of anoxia during arrest of cerebral circulation for intracranial surgery. J Neurosurg. 1955;12:226–39.CrossRefGoogle ScholarPubMed
Mattingly, TK, Lownie, SP. Cold blood perfusion for selective hypothermia in acute ischemic stroke. Brain Circ. 2019;5:187–94.CrossRefGoogle ScholarPubMed
Caroff, J, King, RM, Mitchell, JE, et al. Focal cooling of brain parenchyma in a transient large vessel occlusion model: proof of concept. J Neurointervent Surg. 2020;12:209–13.CrossRefGoogle Scholar
Mattingly, TK, Denning, LM, Siroen, KL, et al. Catheter based selective hypothermia reduces stroke volume during focal ischemia in swine. J Neurointervent Surg. 2016;8:418–22.CrossRefGoogle ScholarPubMed
Wu, D, Chen, J, Hussain, M, Wu, L, Shi, J, et al. Selective intra-arterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: efficacy depending on reperfusion status. J Cereb Blood Flow Metab. 2020;40:1415–26.CrossRefGoogle Scholar
Wang, CH, Lin, YT, Chou, HW, et al. Novel approach for independent control of brain hypothermia and systemic normothermia: cerebral selective deep hypothermia for refractory cardiac arrest. J Neurointervent Surg. 2017;9:e32.CrossRefGoogle ScholarPubMed
Lownie, SP, Menkis, AH, Craen, RA, Mezon, B, MacDonald, J, Steinman, DA. Extracorporeal femoral to carotid artery perfusion in selective brain cooling for a giant aneurysm. J Neurosurg. 2004;100:343–47.CrossRefGoogle ScholarPubMed
Mattingly, TK, Lopez-Ojeda, P, Arango, M, et al. Endovascular selective hypothermia facilitates giant aneurysm clipping: illustrative case. J Neurosurg Case Lessons. 2021;1:14.CrossRefGoogle Scholar
Chen, J, Liu, L, Zhang, H, et al. Endovascular hypothermia in acute ischemic stroke: pilot study of selective intra-arterial cold saline infusion. Stroke. 2016;47:1933–35.CrossRefGoogle ScholarPubMed
Wu, C, Zhao, W, An, H, et al. Safety, feasibility, and potential efficacy of intraarterial selective cooling infusion for stroke patients treated with mechanical thrombectomy. J Cereb Blood Flow Metab. 2018;38:2251–60.CrossRefGoogle ScholarPubMed
Lyden, P. Selective cerebral cooling for acute ischemic stroke. J Cereb Blood Flow and Metab. 2020;40:1365–67.CrossRefGoogle ScholarPubMed
Lyden, PD, Lamb, J, Kothari, S, Toosi, S, Boitano, P, Rajput, PS. Differential effects of hypothermia on neurovascular unit determine protective or toxic results: toward optimized therapeutic hypothermia. J Cereb Blood Flow and Metab. 2019;39:1693–709.CrossRefGoogle ScholarPubMed
Lyden, PD, Buchan, AM, Boltze, J, et al. Top priorities for cerebroprotective studies: a paradigm shift. Stroke. 2021;52:3063–71.CrossRefGoogle ScholarPubMed
Savitz, SI, Baron, JC, Yenari, MA, et al. Reconsidering neuroprotection in the reperfusion Era. Stroke. 2017;48:3413–19.CrossRefGoogle ScholarPubMed
Neuhaus, AA, Couch, Y, Hadley, G, Buchan, AM. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain. 2017;140:2079–92.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Neuroprotection in Acute Ischemic Stroke: A Brief Review
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Neuroprotection in Acute Ischemic Stroke: A Brief Review
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Neuroprotection in Acute Ischemic Stroke: A Brief Review
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *