Skip to main content Accessibility help

hnRNP A1 and A/B Interaction with PABPN1 in Oculopharyngeal Muscular Dystrophy

  • Xueping Fan (a1), Christiane Messaed (a1), Patrick Dion (a1), Janet Laganiere (a1), Bernard Brais (a2), George Karpati (a3) and Guy A. Rouleau (a1)...



Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive ptosis, dysphagia and proximal limb weakness. The autosomal dominant form of this disease is caused by short expansions of a (GCG)6 repeat to (GCG)8-13 in the PABPN1 gene. The mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminus of PABPN1. The mutated PABPN1 (mPABPN1) induces the formation of intranuclear filamentous inclusions that sequester poly(A) RNA and are associated with cell death.


Human fetal brain cDNA library was used to look for PABPN1 binding proteins using yeast two-hybrid screen. The protein interaction was confirmed by GST pull-down and co-immunoprecipitation assays. Oculopharyngeal muscular dystrophy cellular model and OPMD patient muscle tissue were used to check whether the PABPN1 binding proteins were involved in the formation of OPMD intranuclear inclusions.


We identify two PABPN1 interacting proteins, hnRNP A1 and hnRNP A/B. When co-expressed with mPABPN1 in COS-7 cells, predominantly nuclear protein hnRNP A1 and A/B co-localize with mPABPN1 in the insoluble intranuclear aggregates. Patient studies showed that hnRNP A1 is sequestered in OPMD nuclear inclusions.


The hnRNP proteins are involved in mRNA processing and mRNA nucleocytoplasmic export, sequestering of hnRNPs in OPMD intranuclear aggregates supports the view that OPMD intranuclear inclusions are “poly(A) RNA traps”, which would interfere with RNA export, and cause muscle cell death.

RÉSUMÉ: Introduction:

La dystrophie musculaire oculopharyngée (DMOP) est une maladie de l’âge adulte caractérisée par une ptose progressive des paupières, une dysphagie et une faiblesse musculaire proximale. La forme autosomique dominante est causée par de courtes expansions d’une répétition (GCG)6 à (GCG)8-13 dans le gene PABPN1. Les mutations donnent lieu à une expansion d’un tractus de polyalanine de 10 à 12-17 alanines dans la partie N-terminale de PABPN1. Le gène PABPN1 muté (PABPN1m) induit la formation d’inclusions filamenteuses intranucléaires qui séquestrent l’ARN poly(A) et entraînent la mort cellulaire.


Une librairie d’ADNc provenant de cerveau foetal humain a été utilisée pour chercher la protéine liant PABPN1 au moyen du système à double-hybrides dans la levure. L’interaction protéine-protéine a été confirmée par GST pull-down et co-immunoprécipitation. Le modèle cellulaire de DMOP et le tissu musculaire provenant de patients atteints DMOP ont été utilisés pour vérifier si les protéines liant PABPN1 étaient impliquées dans la formation des inclusions intranucléaires dans la DMOP.


Nous avons identifié deux protéines interagissant avec PABPN1, hnRNP A1 et hnRNP A/B. En co-expression avec PABPN1m dans des cellules COS-7, les protéines hnRNP A1 et A/B à prédominance nucléaire se retrouvent avec PABPN1m dans les agrégats intranucléaires insolubles. Des études chez les patients atteints de DMOP ont montré que hnRNP A1 est séquestré dans les inclusions nucléaires.


Les protéines hnRNP sont impliquées dans la maturation de l’ARNm et le transport nucléocytoplasmique de l’ARNm. La séquestration de hnRNPs dans les agrégats intranucléaires appuie l’hypothèse selon laquelle les inclusions intranucléaires de la DMOP sont des “piètes à ARN poly(A)” qui interfèrent avec le transport de l’ARN et causent la mort des cellules musculaires.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      hnRNP A1 and A/B Interaction with PABPN1 in Oculopharyngeal Muscular Dystrophy
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      hnRNP A1 and A/B Interaction with PABPN1 in Oculopharyngeal Muscular Dystrophy
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      hnRNP A1 and A/B Interaction with PABPN1 in Oculopharyngeal Muscular Dystrophy
      Available formats



Hide All
1. Brais, B, Rouleau, GA, Bouchard, JP, Fardeau, M, Tome FM. Oculopharyngeal muscular dystrophy. Semin Neurol 1999;19:5966.
2. Muller, T, Schroder, R, Zierz, S. GCG repeats and phenotype inoculopharyngeal muscular dystrophy. Muscle Nerve 2001;24:120122.
3. Blumen, SC, Korczyn, AD, Lavoie H, et al. Oculopharyngeal MDamong Bukhara Jews is due to a founder (GCG)9 mutation in the PABP2 gene. Neurology 2000;55:12671270.
4. Nagashima, T, Kato, H, Kase, M, et al. Oculopharyngeal musculardystrophy in a Japanese family with a short GCG expansion (GCG)(11) in PABP2 gene. Neuromuscul Disord 2000;10:173177.
5. Mirabella, M, Silvestri, G, Di Giovanni, S, et al. GCG geneticexpansions in Italian patients with oculopharyngeal muscular dystrophy. Neurology 2000;54:608614.
6. Grewal, RP, Karkera, JD, Grewal, RK, Detera-Wadleigh, SD. Mutation analysis of oculopharyngeal muscular dystrophy in Hispanic American families. Arch Neurol 1999;56:13781381.
7. Tome, FM, Fardeau, M. Nuclear inclusions in oculopharyngealdystrophy. Acta Neuropathol (Berl) 1980;49:8587.
8. Tome, FM, Chateau, D, Helbling-Leclerc, A, Fardeau, M. Morphological changes in muscle fibers in oculopharyngeal muscular dystrophy. Neuromuscul Disord 1997;7 (Suppl 1):S63-69.
9. Brais, B, Xie, YG, Sanson, M, et al. The oculopharyngeal musculardystrophy locus maps to the region of the cardiac alpha and beta myosin heavy chain genes on chromosome 14q11.2-q13. Hum Mol Genet 1995;4:429434.
10. Brais, B, Bouchard, JP, Gosselin, F, et al. Using the full power oflinkage analysis in 11 French Canadian families to fine map the oculopharyngeal muscular dystrophy gene. Neuromuscul Disord 1997; 7(Suppl 1): S70-74.
11. Xie, YG, Rochefort, D, Brais, B, et al. Restriction map of a YAC andcosmid contig encompassing the oculopharyngeal muscular dystrophy candidate region on chromosome 14q11.2-q13. Genomics 1998;52:201204.
12. Brais, B, Bouchard, JP, Xie, YG, et al. Short GCG expansions in thePABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998;18:164167.
13. Muragaki, Y, Mundlos, S, Upton, J, Olsen, BR. Altered growth andbranching patterns in synpolydactyly caused by mutations in HOXD13. Science 1996;272:548551.
14. Mundlos, S, Otto, F, Mundlos, C, et al. Mutations involving thetranscription factor CBFA1 cause cleidocranial dysplasia. Cell 1997;89:773779.
15. Brown, SA, Warburton, D, Brown, LY, et al. Holoprosencephaly dueto mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 1998;20:180183.
16. Goodman, FR, Bacchelli, C, Brady, AF, et al. Novel HOXA13mutations and the phenotypic spectrum of hand-foot-genitalsyndrome. Am J Hum Genet 2000;67:197202.
17. Crisponi, L, Deiana, M, Loi, A, et al. The putative forkheadtranscription factor FOXL2 is mutated in blepharophimosis/ ptosis/epicanthus inversus syndrome. Nat Genet 2001;27:159166.
18. Ferrigno, P, Silver, PA. Polyglutamine expansions: proteolysis,chaperones, and the dangers of promiscuity. Neuron 2000;26:912.
19. Huntington’s Disease Collaborative Research Group. A novel genecontaining a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72:971983.
20. La Spada, AR, Wilson, EM, Lubahn, DB, Harding, AE, Fischbeck, KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352:7779.
21. Koide, R, Ikeuchi, T, Onodera, O, et al. Unstable expansion of CAGrepeat inhereditarydentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994;6:913.
22. Nagafuchi, S, Yanagisawa, H, Sato, K, et al. Dentatorubral andpallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 1994;6:1418.
23. Orr, HT, Chung, MY, Banfi, S, et al. Expansion of an unstabletrinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4:221226.
24. Kawaguchi, Y, Okamoto, T, Taniwaki, M, et al. CAG expansions in anovel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994;8:221228.
25. Imbert, G, Saudou, F, Yvert, G, et al. Cloning of the gene forspinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996;14:285291.
26. Pulst, SM, Nechiporuk, T, Gispert, S, et al. Moderate expansion of anormally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996;14:269276.
27. Sanpei, K, Takano, H, Igarashi, S, et al. Identification of thespinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996;14:277284.
28. David, G, Abbas, N, Stevanin, G, et al. Cloning of the SCA7 genereveals a highly unstable CAG repeat expansion. Nat Genet 1997;17:6570.
29. Koob, MD, Benzow, KA, Bird, TD, et al. Rapid cloning of expandedtrinucleotide repeat sequences from genomic DNA. Nat Genet 1998;18:7275.
30. Wahle, E. Anovel poly(A)-binding protein acts as a specificity factorin the second phase of messenger RNA polyadenylation. Cell 1991;66:759768.
31. Colgan, DF, Manley, JL. Mechanism and regulation of mRNApolyadenylation. Genes Dev 1997;11:27552766.
32. Minvielle-Sebastia, L, Keller, W. mRNA polyadenylation and itscoupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol 1999;11:352357.
33. Barabino, SML, Keller, W. Last but not least: regulated poly(A) tailformation. Cell 1999;99:911.
34. Wahle, E. Poly(A) tail length control is caused by termination ofprocessive synthesis. J Biol Chem 1995;270:28002808.
35. Bienroth, S, Keller, W, Wahle, E. Assembly of a processive messengerRNA polyadenylation complex. EMBO J 1993;12:585594.
36. Calado, A, Tome, FMS, Brais, B, et al. Nuclear inclusions inoculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000;9:23212328.
37. Becher, MW, Kotzuk, JA, Davis, LE, Bear, DG. Intranuclearinclusions in oculopharyngeal muscular dystrophy containpoly(A) binding protein 2. Ann Neurol 2000;48:812815.
38. Uyama, E, Tsukahara, T, Goto, K, et al. Nuclear accumulation ofexpanded PABP2 gene product in oculopharyngeal muscular dystrophy. Muscle Nerve 2000;23:15491554.
39. Shanmugam, V, Dion, P, Rochefort, D, et al. PABP2 polyalanine tractexpansion causes intranuclear inclusions in oculopharyngealmuscular dystrophy. Ann Neurol 2000;48:798802.
40. Fan, X, Dion, P, Laganiere, J, Brais, B, Rouleau, GA. Oligomerizationof polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum Mol Genet 2001;10:23412351.
41. Kim, YJ, Noguchi, S, Hayashi, YK, et al. The product of anoculopharyngeal muscular dystrophy gene, poly(A)-binding protein 2, interacts with SKIP and stimulates muscle-specific gene expression. Hum Mol Genet 2001;10:11291139.
42. Bao, YP, Cook, LJ, O’Donovan, D, et al. Mammalian, yeast, bacterialand chemical chaperones reduce aggregate formation and death in a cell model of oculopharyngeal muscular dystrophy. J Biol Chem 2002;277:1226312269.
43. Nakielny, S, Dreyfuss, G. Transport of proteins and RNAs in and outof the nucleus. Cell 1999;99:677690.
44. Kumar, A, Sierakowska, H, Szer, W. Purification and RNA bindingproperties of a C-type hnRNP protein from HeLa cells. J Biol Chem 1987;262:1712617137.
45. Khan, FA, Jaiswal, AK, Szer, W. Cloning and sequence analysis of ahuman type A/B hnRNP protein. FEBS 1991;290:159161.
46. Calado, A, Kutay, U, Kuhn, U, Wahle, E, Carmo-Fonseca, M. Deciphering the cellular pathway for transport of poly(A)-binding protein II. RNA 2000;6:245256.
47. Krause, S, Fakan, S, Weis, K, Wahle, E. Immunodetection of poly(A)binding protein II in the cell nucleus. Exp Cell Res 1994;214:7582.
48. Dreyfuss, G, Matunis, MJ, Pino-Roma, S, Burd, CG. hnRNP proteinsand the biogenesis of mRNA. Ann Rev Biochem 1993;62:289321.
49. Swanson, MS. Functions of nuclear pre-mRNA/mRNA bindingproteins. In: Lamond, AI, (Ed). Pre-mRNA Processing. Berlin/ New York: Springer Verlag, 1995:1733.
50. Pinol-Roma, S, Dreyfuss, G. Shuttling of pre-mRNA bindingproteins between nucleus and cytoplasm. Nature 1992;355:730732.
51. Visa, N, Alzhanova-Ericsson, AT, Sun, X, Kiseleva, E. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 1996;84:253264.
52. Nakielny, S, Dreyfuss, G. Nuclear export of proteins and RNAs. CurrOpin Cell Biol 1997;9:420429.
53. Krecic, AM, Swanson, MS. hnRNP complexes: composition,structure, and function. Curr Opin Cell Biol 1999;11:363371.
54. Lau, PP, Zhu, HJ, Nakamuta, M, Chan, L. Cloning of an apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing. J Biol Chem 1997;272:14521455.
55. Innerarity, TL, Boren, J, Yamanaka, S, Olofsson, SO. Biosynthesis of apolipoprotein B48-containing lipoproteins. J Biol Chem 1996;271:23532356.
56. Lau, PP, Xiong, W, Zhu, HJ, Chen, SH, Chan, L. Apolipoprotein BmRNA editing is an intranuclear event that occurs post-transcriptionally coincident with splicing and polyadenylation. J Biol Chem 1991;266:2055020554.
57. Sherman, MY, Goldberg, AL. Cellular defenses against unfoldedproteins: a cell biologist thinks about neurodegenerative diseases. Neuron 2001;29:1532.
58. Orr, HT. Beyond the Qs in the polyglutamine diseases. Genes Dev 2001;15:925932.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed