Skip to main content Accessibility help

Tractography in the Study of the Human Brain: A Neurosurgical Perspective

  • David Fortin (a1), Camille Aubin-Lemay (a1), Arnaud Boré (a2), Gabriel Girard (a2), Jean-Christophe Houde (a2), Kevin Whittingstall (a3) and Maxime Descoteaux (a2)...

The brain functions as an integrated multi-networked organ. Complex neurocognitive functions are not attributed to a single brain area but depend on the dynamic interactions of distributed brain areas operating in large-scale networks. This is especially important in the field of neurosurgery where intervention within a spatially localized area may indirectly lead to unwanted effects on distant areas. As part of a preliminary integrated work on functional connectivity, we present our initial work on diffusion tensor imaging tractography to produce in vivo white matter tracts dissection.


Diffusion weighted data and high-resolution T1-weighted images were acquired from a healthy right-handed volunteer (25 years old) on a whole-body 3 T scanner. Two approaches were used to dissect the tractography results: 1) a standard region of interest technique and 2) the use of Brodmann's area as seeding points, which represents an innovation in terms of seeds initiation.


Results are presented as tri-dimensional tractography images. The uncinate fasciculus, the inferior longitudinal fasciculus, the inferior fronto-occipital fasiculus, the corticospinal tract, the corpus callosum, the cingulum, and the optic radiations where studied by conventional seeding approach, while Broca's and Wernicke's areas, the primary motor as well as the primary visual cortices were used as seeding areas in the second approach.


We report state-of-the-art tractography results of some of the major white matter bundles in a normal subject using DTI. Moreover, we used Brodmann's area as seeding areas for fiber tracts to study the connectivity of known major functional cortical areas.

RÉSUMÉ Contexte:

Le cerveau fonctionne comme un organe constitué en multiréseaux intégrés et les fonctions neurocognitives complexes ne sont pas restreintes à une seule zone du cerveau. Elles dépendent d'interactions dynamiques de différentes régions du cerveau opérant en réseaux de grande envergure. Ceci est particulièrement important dans le domaine de la neurochirurgie où une intervention à l'intérieur d'une zone très localisée peut provoquer indirectement des effets indésirables à distance. Nous présentons, dans le cadre d'un travail intégré préliminaire sur la connectivité fonctionnelle, nos travaux initiaux sur la tractographie par IRM de diffusion pour obtenir in vivo la dissection de faisceaux de la substance blanche.


Des données de l'IRM pondérée en diffusion et des images de haute résolution pondérées en T1 ont été acquises chez un volontaire sain droitier de 25 ans au moyen d'un scanner T3 du corps entier. Deux approches ont été utilisées pour disséquer les résultats de la tractographie: 1) une technique standard ciblant une région spécifique et 2) l'utilisation de la zone de Brodmann comme point d'essaimage, ce qui constitue une innovation.


Nous présentons des images de tractographie tridimensionnelles. Le faisceau unciné, le faisceau longitudinal inférieur, le faisceau fronto-occipital inférieur, le faisceau pyramidal, le corps calleux, le cingulum et les radiations optiques de Gratiolet ont été étudiés par la méthode d'essaimage conventionnelle alors que les zones de Broca et de Wernicke ainsi que les cortex primaires moteurs et visuels ont été utilisés comme zones d'essaimage dans la deuxième approche.


Nous rapportons des résultats de tractographie par IRM de diffusion, une technologie de pointe, de certains des faisceaux importants de la substance blanche chez un sujet normal. De plus, nous avons utilisé la zone de Brodmann comme zone d'essaimage afin d'étudier la connectivité des zones corticales fonctionnelles majeures connues.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tractography in the Study of the Human Brain: A Neurosurgical Perspective
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tractography in the Study of the Human Brain: A Neurosurgical Perspective
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tractography in the Study of the Human Brain: A Neurosurgical Perspective
      Available formats
Corresponding author
Université de Sherbrooke, Division of Neurosurgery and Neuro-oncology, 3001, 12th Avenue North, Sherbrooke (Québec) J1H 5N4, Canada. Email:
Hide All
1. de Benedictis, A, Duffau, H. Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery. 2011;68(6):170923.
2. Broadmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde. Verlag von Johann Ambrosius Barth. Leipzig. 1990.
3. Duffau, H. Nouveautés thérapeutiques chirurgicales dans les gliomes diffus de bas grade: cartographie cérébrale, hodotopie et neuroplasticité. Bull Acad Natl Med. 2011;195(1):3749.
4. Duffau, H. Introduction. Surgery of gliomas in eloquent areas: from brain hodotopy and plasticity to functional neurooncology. Neurosurg Focus. 2010;28(2).
5. Bressler, SL, Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6): 27790.
6. Young, MP, Scannell, JW, Burns, GA, Blakemore, C. Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci. 1994;5(3):27250.
7. Honey, CJ, Kötter, R, Breakspear, M, Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA. 2007;104(24):102405.
8. Passingham, RE, Stephan, KE, Kötter, R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci. 2002;3(8):60616.
9. Catani, M, Howard, RJ, Pajevic, S, Jones, DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17(1):7794.
10. Behrens, TH, Johansen-Berg, H. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. Amsterdam. Elsevier. 2009.
11. Jones, DK. Diffusion MRI: theory, methods and applications. New York. Oxford University Press. 2010.
12. Descoteaux, M, Deriche, R, Knoesche, T, Anwander, A. Deterministic and probabilistic tractography based on complex fiber orientation distributions. IEEE Trans Med Imaging. 2009;28(2):26986.
13. Descoteaux, M, Poupon, C. Diffusion-weighted MRI. In: Comprehensive biomedical physics. Belvic, D, Belvic, K, editors. Elsevier. Forthcoming 2012.
14. Anwander, A, Tittgemeyer, M, Von Cramon, DY, Friederici, AD, Knosche, TR. Connectivity-based parcellation of Broca’s area. Cereb Cortex. 2007;17(4):81625.
15. Jones, DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51:80715.
16. Talairach, J, Tournoux, P. Coplanar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Amsterdam. Thieme Medical Publishers; 1988.
17. Smith, SM, Jenkinson, M, Woolrich, MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. [serial on the Internet]. 2004;23(S1):208-19. Available from:
18. MedINRIA [homepage on the Internet]. Asclepios Research Project. Inria Sophia Antipolis. Available from:
19. Fibernavigator [homepage on the Internet]. Google Project Hosting. Available from:
20. Mori, S, Kaufmann, WE, Davatzikos, C, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med. 2002;47(2):21523.
21. Blumenfeld, H. Neuroanatomy through clinical cases. 1st ed. Sunderland. Sinauer Associates. January 2002.
22. Conturo, TE, Lori, NF, Cull, TS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci. 1999;96:104227.
23. MRIcro [homepage on the Internet]. Colombia: Chris Rorden. Available from:
24. Catani, M, Mesulam, M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex. 2008;44(8):95361.
25. Shinoura, N, Suzuki, Y, Tsukada, M, et al. Deficits in the left inferior longitudinal fasciculus results in impairments in object naming. Neurocase. 2010;16(2):1359.
26. Shinoura, N, Suzuki, Y, Yamada, R, Tabei, Y, Saito, K, Yagi, K. Damage to the right superior longitudinal fasciculus in the inferior parietal lobe plays a role in spatial neglect. Neuropsychologia. 2009;47(12):26003.
27. Ebeling, U, von Cramon, D. Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochir (Wien). 1992;115:1438.
28. Schmahmann, JD, Pandya, DN, Wang, R, et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain. 2007;130:63053.
29. Sincoff, EH, Tan, Y, Abdulrauf, SI. White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg. 2004;101:73946.
30. Papagno, C. Naming and the role of the uncinate fasciculus in language function. Curr Neurol Neurosci Rep. 2011;11(6):5539.
31. Papagno, C, Miracapillo, C, Casarotti, A, et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 2011 Feb;134(Pt 2):40514.
32. Dejerine, J. Anatomie des Centres Nerveux. Vol. 1, Paris: Rueff et Cie. 1895.
33. Martino, J, Brogna, C. Anatomy of the white-matter pathways. In: Brain Mapping, editors. Wien. Springer-Verlag. 2011. p. 2741.
34. Shinoura, N, Suzuki, Y, Tsukada, M, et al. Deficits in the left inferior longitudinal fasciculus results in impairments in object naming. Neurocase. 2010;16(2):1359.
35. Gloor, P. The temporal lobe and the limbic system. New York: Oxford Univ Press; 1997.
36. Crosby, EC, Humphrey, T, Lauer, EW. Correlative anatomy of the nervous system. New York: Macmillian Co; 1962.
37. Philippi, CL, Mehta, S, Grabowski, T, Adolphs, R, Rudrauf, D. Damage to association fiber tracts impairs recognition of the facial expression of emotion. J Neurosci. 2009;29(48):1508999.
38. Leclercq, D, Delmaire, C, De Champfleur, NM, Chiras, J, Lehericy, S. Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am. 2011;22(2):25368.
39. Krieg, S.M, Buchmann, NH, Gempt, J, Shiban, E, Meyer, B, Ringel, F. Diffusion tensor imaging fiber tracking using navigated brain stimulation-a feasibility study. Acta Neurochir (Wien). 2012 Mar;154(3):55563.
40. Romano, A, D’Andrea, G, Calabria, LF, et al. Pre- and intraoperative tractographic evaluation of corticospinal tract shift. Neurosurgery. 2011;69(3):696704.
41. Buchmann, N, Gempt, J, Stoffel, M, Foerschler, A, Meyer, B, Ringel, F. Utility of diffusion tensor-imaged (DTI) motor fiber tracking for the resection of intracranial tumors near the corticospinal tract. Acta Neurochir. 2011;153(1):6874.
42. Morita, N, Wang, S, Kadakia, P, Chawla, S, Poptani, H, Melhem, ER. Diffusion tensor imaging of the corticospinal tract in patients with brain neoplasms. Magn Reson Med Sci. 2011;10(4):23943.
43. Bello, L, Gambini, A, Castellano, A, et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39(1):36982.
44. Hofer, S, Karaus, A, Frahm, J. Reconstruction and dissection of the entire human visual pathway using diffusion tensor MRI. Front Neuroanat. 2010;4:15.
45. Kitajima, M, Korogi, Y, Takahashi, M, Eto, K. MR signal intensity of the optic radiation. Am J Neuroradiol. 1996;17:137983.
46. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J. A. Barth. 1909.
47. Geyer, S, Matelli, M, Luppino, G, Zilles, K. Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl). 2000;202(6):44374.
48. Zilles, K, Schlaug, G, Geyer, S, et al. Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol. 1996;70:2943.
49. Yasargil, MG. Microneurosurgery. vol 4a. New York: Georg Thieme Verlag Stuttgart. 1994.
50. McGirt, MJ, Chaichana, KL, Gathinji, M, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):15662.
51. Sanai, N, Berger, MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):75364.
52. McGirt, MJ, Mukherjee, D, Chaichana, KL, Than, KD, Weingart, JD, Quinones-Hinojosa, A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(3):4639.
53. Dea, N, Fournier-Gosselin, MP, Mathieu, D, Fortin, D: Does extent of resection impact survival in patients bearing glioblastoma? CJNS. 2012, in press.
54. Ojemann, G, Ojemann, J, Lettich, E, Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71(3):31626.
55. Veilleux, N, Goffaux, P, Boudrias, M, Mathieu, D, Daigle, K, Fortin, D. Quality of life in neurooncology-age matters. J Neurosurg. 2010;113(2):32532.
56. Goffaux, P, Boudrias, M, Mathieu, D, Charpentier, C, Veilleux, N, Fortin, D. Development of a concise QOL questionnaire for brain tumor patients. Can J Neurol Sci. 2009;36(3):3408.
57. Goffaux, P, Daigle, K, Fortin, D. Patients with brain cancer: health related quality of life. M. A. Hayat, editors. Tumors of the Central Nervous System, Vol. 4, 2012;341.
58. Cammoun, L, Gigandet, X, Meskaldji, D, et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods. 2012;203(2):38697.
59. Duffau, H. The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia. 2008;4:92734.
60. Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:47686.
61. Quiñones-Hinojosa, A, Ojemann, SG, Sanai, N, Dillon, WP, Berger, MS. Preoperative correlation of intraoperative cortical mapping with magnetic resonance imaging landmarks to predict localization of the broca area. J Neurosurg. 2003;99:31118.
62. Tournier, JD, Calamante, F, Connelly, A. MRtrix: Diffusion tractography in crossing fiber regions. Int J Imag Sys Tech. 2012; 22(1):5366.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Neurological Sciences
  • ISSN: 0317-1671
  • EISSN: 2057-0155
  • URL: /core/journals/canadian-journal-of-neurological-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed