Skip to main content Accessibility help

Distributive and Anti-distributive Mendelsohn Triple Systems

  • Diane M. Donovan (a1), Terry S. Griggs (a2), Thomas A. McCourt (a3), Jakub Opršal (a4) and David Stanovský (a4)...


We prove that the existence spectrum of Mendelsohn triple systems whose associated quasigroups satisfy distributivity corresponds to the Loeschian numbers, and provide some enumeration results. We do this by considering a description of the quasigroups in terms of commutative Moufang loops. In addition we provide constructions of Mendelsohn quasigroups that fail distributivity for asmany combinations of elements as possible. These systems are analogues of Hall triple systems and anti-mitre Steiner triple systems respectively.



Hide All
[1] Belousov, V. D., Osnovy teorii kvazigrupp i lup. Izdat. “Nauka”, Moscow, 1967.
[2] Bénétau, L., Commutative Moufang loops and related groupoids. In: Quasigroups and loops: theory and applications. Sigma Ser. Pure Math., 8, Heldermann, Berlin, 1990, pp. 115142.
[3] Bruck, R. H., A survey of binary systems. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin-Gôttingen-Heidelberg, 1958.
[4] Colbourn, C. J. and Dinitz, J.H., (eds.), Handbook of combinatorial designs. Second éd., Chapman and Hall/CRC Press, Boca Raton, FL, 2007.
[5] Colbourn, C. J., E. Mendelsohn, A. Rosa, and J. Sirân, Anti-mitre Steiner triple systems. Graphs Combin. 10(1994), no. 3, 215224. http://dx.doi.Org/10.1007/BF02986668
[6] Delandtsheer, A., Doyen, J., Siemons, J., and Tamburini, C., Doubly homogeneous 2-(v, k, 1) designs. J. Combin. Theory Ser. A 43(1986), no. 1,140-145. http://dx.doi.Org/10.1016/0097-3165(86)90033-6
[7] Fujiwara, Y., Constructions for anti-mitre Steiner triple systems. J. Combin. Des. 13(2005), no. 4, 286291. http://dx.doi.Org/10.1002/jcd.20041
[8] Fujiwara, Y., Infinite classes of anti-mitre and 5-sparse Steiner triple systems. J. Combin. Des. 14(2006), no. 3, 237250. http://dx.doi.Org/10.1 OO2/jcd.2OO78
[9] Galkin, V. M., Finite distributive quasigroups. (Russian) Mat. Zametki 24(1978), 3941.
[10] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.5.5. 2012.
[11] Hall, M., Automorphisms ofSteiner triple systems. IBM J. Res. Develop. 4(1960), 460472. http://dx.doi.Org/10.1147/rd.45.0460
[12] Kepka, T. and Nëmec, P., Commutative Moufang loops and distributive groupoids of small orders. Czechoslovak Math. J. 31(106)(1981), 633669.
[13] Kirkman, T. P., On a problem in combinations. Cambridge and Dublin Math. J. 2(1847), 191204.
[14] Mendelsohn, N.S., A natural generalization ofSteiner triple systems. In: Computers in number theory Academic Press, London, 1971, 323338.
[15] Nagy, G. P. and P. Vojtëchovsky, LOOPS: Computing with quasigroups and loops in GAP, version 2.2.0.
[16] H, J. D.. Smith, Finite distributive quasigroups. Math. Proc. Cambridge Philos. Soc. 80(1976), no. 1, 3741. http://dx.doi.Org/10.1017/S0305004100052634
[17] Soublin, J-P., Étude algébrique de la notion de moyenne. J. Math. Pures Appl. (9) 50(1971), 53264.
[18] Stanovsky, D., A guide to self-distributive quasigroups, or latin quandles. Quasigroups Related Systems 23(2015), no. 1, 91128.
[19] Wolfe, A., The resolution of the anti-mitre Steiner triple system conjecture. J. Combin. Des. 14(2006), no. 3, 229236. http://dx.doi.Org/!0.1OO2/jcd.2OO79
MathJax is a JavaScript display engine for mathematics. For more information see


Related content

Powered by UNSILO

Distributive and Anti-distributive Mendelsohn Triple Systems

  • Diane M. Donovan (a1), Terry S. Griggs (a2), Thomas A. McCourt (a3), Jakub Opršal (a4) and David Stanovský (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.