Skip to main content Accessibility help

Einstein–Maxwell Equations on Four-dimensional Lie Algebras

  • Caner Koca (a1) and Mehdi Lejmi (a2)


We classify up to automorphisms all left-invariant non-Einstein solutions to the Einstein–Maxwell equations on four-dimensional Lie algebras.



Hide All

The authors were supported in part by a PSC-CUNY research award #61768-00 49.



Hide All
[1] Apostolov, V., Calderbank, D. M. J., and Gauduchon, P., Ambitoric geometry I: Einstein metrics and extremal ambikähler structures . J. Reine Angew. Math. 721(2016), 109147.
[2] Apostolov, V. and Maschler, G., Conformally Kähler, Einstein–Maxwell geometry . J. Eur. Math. Soc. 21(2019), no. 5, 13191360.
[3] Drăghici, T., On some 4-dimensional almost Kähler manifolds . Kodai Math. J. 18(1995), no. 1, 156168.
[4] Fino, A., Almost Kähler 4-dimensional Lie groups with J-invariant Ricci tensor . Differential Geom. Appl. 23(2005), 1, 2637.
[5] Futaki, A. and Ono, H., Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group . Math. Z. 292(2019), no. 1–2, 571589.
[6] Futaki, A. and Ono, H., On the existence problem of Einstein–Maxwell Kähler metrics. arxiv:1803.06801
[7] Futaki, A. and Ono, H., Volume minimization and conformally Kähler, Einstein–Maxwell geometry . J. Math. Soc. Japan 70(2018), 4, 14931521.
[8] Karki, M. B. and Thompson, G., Four-dimensional Einstein Lie groups . Differ. Geom. Dyn. Syst. 18(2016), 4357.
[9] Koca, C. and Tønnesen-Friedman, C. W., Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces . Ann. Global Anal. Geom. 50(2016), no. 1, 2946.
[10] Lahdili, A., Conformally Kähler, Einstein–Maxwell metrics and boundedness of the modified Mabuchi-functional. arxiv:1710.00235
[11] Lahdili, A., Automorphisms and deformations of conformally Kähler, Einstein–Maxwell metrics . J. Geom. Anal. 29(2019), no. 1, 542568.
[12] LeBrun, C., The Einstein–Maxwell equations, extremal Kähler metrics, and Seiberg–Witten theory . In: The many facets of geometry . Oxford University Press, Oxford, 2010, pp. 1733.
[13] LeBrun, C., The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry . J. Geom. Phys. 91(2015), 163171.
[14] LeBrun, C., The Einstein–Maxwell equations and conformally Kähler geometry . Comm. Math. Phys. 344(2016), no. 2, 621653.
[15] Mubarakzjanov, G. M., Classification of real structures of Lie algebras of fifth order . Izv. Vysš. Učebn. Zaved. Matematika 1963(1963), no. 3 (34), 99106.
[16] Patera, J., Sharp, R. T., and Winternitz, P., Invariants of real low dimension Lie algebras . J. Math. Phys. 17(1976), 986994.
[17] Shao, H., Compactness and rigidity of Kähler surfaces with constant scalar curvature. arxiv:1304.0853
[18] Yamabe, H., On a deformation of Riemannian structures on compact manifolds . Osaka Math. J. 12(1960), 2137.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Einstein–Maxwell Equations on Four-dimensional Lie Algebras

  • Caner Koca (a1) and Mehdi Lejmi (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed