Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T04:25:42.068Z Has data issue: false hasContentIssue false

Existence and Uniqueness of Solutions to Singular p-Laplace Equations of Kirchhoff Type

Published online by Cambridge University Press:  16 December 2019

Qingwei Li*
Affiliation:
School of Science, Dalian Maritime University, Dalian 116026, P.R. China Email: lqw1022@dlmu.edu.cn

Abstract

In this paper, we study both the existence and uniqueness of nonnegative solutions for the nonlocal $p$-Laplace equation with singular term

$$\begin{eqnarray}\left\{\begin{array}{@{}ll@{}}-B\Bigl(\frac{1}{p}\int _{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}u|^{p}\text{d}x\Bigr)\unicode[STIX]{x1D6E5}_{p}u=\frac{h(x)}{u^{\unicode[STIX]{x1D6FE}}}+k(x)u^{q},\quad & x\in \unicode[STIX]{x1D6FA},\\ u>0,\quad & x\in \unicode[STIX]{x1D6FA},\\ u=0,\quad & x\in \unicode[STIX]{x2202}\unicode[STIX]{x1D6FA},\end{array}\right.\end{eqnarray}$$
where $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{N}(N\geqslant 1)$ is a bounded domain with smooth boundary $\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$, $h\in L^{1}(\unicode[STIX]{x1D6FA})$, $h>0$ almost everywhere in $\unicode[STIX]{x1D6FA}$, $k\in L^{\infty }(\unicode[STIX]{x1D6FA})$ is a non-negative function, $B:[0,+\infty )\rightarrow [m,+\infty )$ is continuous for some positive constant $m$, $p>1$, $0\leqslant q\leqslant p-1$, and $\unicode[STIX]{x1D6FE}>1$. A “compatibility condition” on the couple $(h(x),\unicode[STIX]{x1D6FE})$ will be given for the problem to admit at least one solution. To be a little more precise, it is shown that the problem admits at least one solution if and only if there exists a $u_{0}\in W_{0}^{1,p}(\unicode[STIX]{x1D6FA})$ such that $\int _{\unicode[STIX]{x1D6FA}}h(x)u_{0}^{1-\unicode[STIX]{x1D6FE}}\text{d}x<\infty$. When $k(x)\equiv 0$, the weak solution is unique.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work is supported by NSFC (11801052), Fundamental Research Funds for the Central Universities (3132019178).

References

Alves, C. O., Corrêa, F. J. S. A., and Ma, T. F., Positive solutions for a Quaailinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(2005), 8593. https://doi.org/10.1016/j.camwa.2005.01.008Google Scholar
Bensedki, A. and Bouchekif, M., On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity. Math. Comput. Modelling 49(2009), 10891096. https://doi.org/10.1016/j.mcm.2008.07.032CrossRefGoogle Scholar
Boccardo, L. and Orsina, L., Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differential Equations 37(2010), 363380. https://doi.org/10.1007/s00526-009-0266-xCrossRefGoogle Scholar
Callegari, A. and Nachman, A., Some singular nonlinear differential equations arising in boundary layer theory. J. Math. Analysis Appl. 64(1978), 96105. https://doi.org/10.1016/0022-247X(78)90022-7CrossRefGoogle Scholar
Callegari, A. and Nachman, A., A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38(1980), 275281. https://doi.org/10.1137/0138024Google Scholar
Diaz, J. I., Hernández, J., and Rakotoson, J. M., On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms. Milan J. Math. 79(2011), 233245. https://doi.org/10.1007/s00032-011-0151-xCrossRefGoogle Scholar
Giacomoni, J. and Saoudi, K., Multiplicity of positive solutions for a singular and critical problem. Nonlin. Analysis 71(2009), 40604077. https://doi.org/10.1016/j.na.2009.02.087Google Scholar
Haitao, Y., Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differential Equations 189(2003), 487512. https://doi.org/10.1016/S0022-0396(02)00098-0CrossRefGoogle Scholar
Hernández, J., Mancebo, F. J., and Vega, J. M., Positive solutions for singular nonlinear elliptic equations. Proc. Royal Soc. Edinb. 137A(2007), 4162. https://doi.org/10.1017/S030821050500065XCrossRefGoogle Scholar
Kirchhoff, G., Mechanik. Teubner, Leipzig, 1883.Google Scholar
Lazer, A. C. and McKenna, P. J., On a singular nonlinear elliptic boundary value problems. Proc. Amer. Math. Soc. 111(1991), 721730. https://doi.org/10.2307/2048410CrossRefGoogle Scholar
Lions, J. L., On some questions in boundary value problems of mathematical physics. In: Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977). North-Holland Mathematics Studies, 30, North-Holland, Amsterdam-New York, 1978, pp. 284346.Google Scholar
Ma, T. F. and Rivera, J. E., Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16(2003), 243248. https://doi.org/10.1016/S0893-9659(03)80038-1CrossRefGoogle Scholar
Perera, K. and Zhang, Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differential Equations 221(2006), 246255. https://doi.org/10.1016/j.jde.2005.03.006CrossRefGoogle Scholar
Shi, J. P. and Yao, M., On a singular semilinear elliptic problem. Proc. Roy. Soc. Edinburgh Sect. A 128(1998), 13891401. https://doi.org/10.1017/S0308210500027384CrossRefGoogle Scholar
Sun, Y. J., Compatibility phenomena in singular problems. Proc. Roy. Soc. Edinburgh Sect. A 143(2013), 13211330. https://doi.org/10.1017/S030821051100117XGoogle Scholar
Sun, Y. and Duanzhi, Z., The role of the power 3 for elliptic equations with negative exponents. Calc. Var. Partial Differential Equations 49(2014), 909922. https://doi.org/10.1007/s00526-013-0604-xGoogle Scholar
Sun, Y. J. and Wu, S. P., An exact estimate result for a class of singular equations with critical exponents. J. Funct. Anal. 260(2011), 12571284. https://doi.org/10.1016/j.jfa.2010.11.018CrossRefGoogle Scholar
Sun, J. J., Wu, S. P., and Long, Y., Combined effects of singular and superlinear nonlinearities in some singular boundary value problems. J. Differential Equations 176(2001), 511531. https://doi.org/10.1006/jdeq.2000.3973Google Scholar
Zhang, Z. and Cheng, J., Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems. Nonlinear Anal. 57(2004), 473484. https://doi.org/10.1016/j.na.2004.02.025CrossRefGoogle Scholar
Zhang, Z. and Perera, K., Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317(2006), 456463. https://doi.org/10.1016/j.jmaa.2005.06.102CrossRefGoogle Scholar