Hostname: page-component-7d684dbfc8-dh8xm Total loading time: 0 Render date: 2023-09-29T10:15:31.078Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

A Mahler Measure of a K3 Surface Expressed as a Dirichlet L-Series

Published online by Cambridge University Press:  20 November 2018

Marie José Bertin*
Université Pierre et Marie Curie (Paris 6), Institut de Mathématiques, 175 rue du Chevaleret, 75013 Paris e-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present another example of a 3-variable polynomial defining a $K3$-hypersurface and having a logarithmic Mahler measure expressed in terms of a Dirichlet $L$-series.

Research Article
Copyright © Canadian Mathematical Society 2012


[1] Beilinson, A., Higher regulators of modular curves. In: Application of Algebraic K-theory to Algebraic Geometry and Number Theory. Contemp. Math. 55, American Mathematical Society, Providence, RI, 1986, pp. 134.Google Scholar
[2] Bertin, M. J., Une mesure de Mahler explicite. C. R. Acad. Sci. Paris Sér. I Math. 333(2001), no. 1, 13.CrossRefGoogle Scholar
[3] Bertin, M. J., Mesure de Mahler d’hypersurfaces K3 . J. Number Theory 128(2008), no. 11, 28902913. doi:10.1016/j.jnt.2007.12.012CrossRefGoogle Scholar
[4] Bertin, M. J., Mahler's measure and L-series of K3 hypersurfaces. In: Mirror Symmetry V. AMS/IP Studies in Advanced Mathematics 38, American Mathematical Society, Providence, RI, 2006, pp. 318.Google Scholar
[5] Bertin, M. J., The Mahler measure and the L-series of a singular K3-surface. arXiv:0803.0413v1math.NT(math.AG).Google Scholar
[6] Boyd, D. W., Mahler's measure and special values of L-functions. Experiment. Math. 7(1998), no. 1, 3782.CrossRefGoogle Scholar
[7] Elkies, N. and Schütt, M., Modular forms and K3 surfaces. arXiv:math.AG/0809.0830v1.Google Scholar
[8] Hulek, K., Kloosterman, R., and Schütt, M., Modularity of Calabi-Yau varieties. In: Global Aspects of Complex Geometry. Springer, Berlin, 2006, pp. 271309.CrossRefGoogle Scholar
[9] Lalin, M. and Rogers, M., Functional equations for Mahler measures of genus-one curves. Algebra Number Theory 1(2007), no. 1, 87117. doi:10.2140/ant.2007.1.87CrossRefGoogle Scholar
[10] Livné, R., Cubic exponential sums and Galois representations. In: Current Trends in Arithmetical Algebraic Geometry. Contemp. Math. 67, American Mathematical Society, Providence, RI, 1987, pp. 247261.CrossRefGoogle Scholar
[11] Livné, R., Motivic orthogonal two-dimensional representations of . Israel J. of Math 92(1995), no. 1-3, 149156. doi:10.1007/BF02762074CrossRefGoogle Scholar
[12] Peters, C., Top, J., and van der Vlugt, M., The Hasse zeta function of a K3 surface related to the number of words of weight5 in the Melas codes. J. Reine Angew. Math. 432(1992), 151176.Google Scholar
[13] Peters, C., Top, J., and van der Vlugt, M., Modular Mahler measures. I. In: Topics in Number Theory. Math. Appl. 467, Kluwer, Dordrecht, 1999, pp. 1748.Google Scholar
[14] Shioda, T., On elliptic modular surfaces. J. Math. Soc. Japan 24(1972), 2059. doi:10.2969/jmsj/02410020CrossRefGoogle Scholar
[15] Schütt, M., CM newforms with rational coefficients. arXiv:math.NT/0511228v5.Google Scholar
[16] Williams, K., Some Lambert series expansions of products of theta functions. Ramanujan Journal 3(1999), no. 4, 367384. doi:10.1023/A:1009853106329CrossRefGoogle Scholar
[17] Yui, N., Arithmetic of certain Calabi-Yau varieties and mirror symmetry. In: Arithmetic Algebraic Geometry. IAS/Park City Math. Ser. 9, American Mathematical Society, Providence, RI, 2001, pp. 507569.Google Scholar
[18] Zagier, D. and Gangl, H., Classical and elliptic polylogarithms and special values of L-series. In: The Arithmetic and Geometry of Algebraic Cycles. Nato Sciences Series C 548, NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer, Dordrecht, 2000, pp. 561615.CrossRefGoogle Scholar
[19] Zucker, I. and McPhedran, R., Dirichlet L-series with real and complex characters and their application to solving double sums. arXiv:0708.1224v1[math-ph]. doi:10.1098/rspa.2007.0162CrossRefGoogle Scholar
[20] Zucker, I. and Robertson, M., A systematic approach to the evaluation of Σ (m,n≠0,0)(am 2 + bmn + cn 2 )s . J. Phys. A: 9(1976), no. 8, 12151225. doi:10.1088/0305-4470/9/8/007CrossRefGoogle Scholar