Skip to main content
×
Home
    • Aa
    • Aa

MicroRNAs: a new piece in the paediatric cardiovascular disease puzzle

  • Ahmed Omran (a1) (a2), Dalia Elimam (a1), Keith A. Webster (a3), Lina A. Shehadeh (a4) and Fei Yin (a2)...
Abstract
Abstract

Cardiovascular diseases in children comprise a large public health problem. The major goals of paediatric cardiologists and paediatric cardiovascular researchers are to identify the cause(s) of these diseases to improve treatment and preventive protocols. Recent studies show the involvement of microRNAs (miRs) in different aspects of heart development, function, and disease. Therefore, miR-based research in paediatric cardiovascular disorders is crucial for a better understanding of the underlying pathogenesis of the disease, and unravelling novel, efficient, preventive, and therapeutic means. The ultimate goal of such research is to secure normal cardiac development and hence decrease disabilities, improve clinical outcomes, and decrease the morbidity and mortality among children. This review focuses on the role of miRs in different paediatric cardiovascular conditions in an effort to encourage miR-based research in paediatric cardiovascular disorders.

Copyright
Corresponding author
Correspondence to: Dr F. Yin, MD, PhD, Department of Pediatrics, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, China. Tel: +86-13517492323; Fax: +86-731-84327922; E-mail: Yf_2323@yahoo.com
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. PAHeidenreich , JGTrogdon , OAKhavjou , et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 2011; 123: 933944.

2.AS Flynt , EC Lai . Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008; 9: 831842.

3.R Rota , R Ciarapica , A Giordano , L Miele , F Locatelli . MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality. Mol Cancer 2011; 10: 120.

5.DP Bartel . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215233.

8.P Khairy , R Ionescu-Ittu , AS Mackie , M Abrahamowicz , L Pilote , AJ Marelli . Changing mortality in congenital heart disease. J Am Coll Cardiol 2010; 56: 11491157.

12. KNIvey , AMuth , JArnold , et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell stem cell 2008; 2: 219229.

14. YZhao , ESamal , DSrivastava . Serum response factor regulates a muscle-specific microRNA that targets hand2 during cardiogenesis. Nature 2005; 436: 214220.

15.JF Chen , EM Mandel , JM Thomson , et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38: 228233.

17.JF Chen , EP Murchison , R Tang , et al. Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008; 105: 21112116.

18.A Roberts , J Allanson , SK Jadico , et al. The cardiofaciocutaneous syndrome. J Med Genet 2006; 43: 833842.

19.E Perez , KE Sullivan . Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr Opin Pediatr 2002; 14: 678683.

21.N Liu , AH Williams , Y Kim , et al. An intragenic mef2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 2007; 104: 2084420849.

23. AVentura , AGYoung , MMWinslow , et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miR clusters. Cell 2008; 132: 875886.

24.T Thum , P Galuppo , C Wolf , et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007; 116: 258267.

25.MM Goddeeris , S Rho , A Petiet , et al. Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development 2008; 135: 18871895.

31. Mde Onis , MBlossner , EBorghi . Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 2010; 92: 12571264.

35.C Akgun , M Dogan , S Akbayram , et al. The incidence of asymptomatic hypertension in school children. J Nihon Med Sch 2010; 77: 160165.

39.JL Baker , LW Olsen , TI Sorensen . Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 2007; 357: 23292337.

41. HXie , LSun , HFLodish . Targeting microRNAs in obesity. Expert Opin Ther Targets 2009; 13: 12271238.

42.L Qin , Y Chen , Y Niu , et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical wnt/beta-catenin signaling pathway. BMC genomics 2010; 11: 320.

44.SY Kim , AY Kim , HW Lee , et al. Mir-27a is a negative regulator of adipocyte differentiation via suppressing ppargamma expression. Biochem Biophys Res Commun 2010; 392: 323328.

46.C Esau , X Kang , E Peralta , et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 5236152365.

47. MKarbiener , CFischer , SNowitsch , et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390: 247251.

49. MTrajkovski , JHausser , JSoutschek , et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474: 649653.

52.T Wang , M Li , J Guan , et al. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. Int J Mol Sci 2011; 12: 79507959.

53.M Kinoshita , K Ono , T Horie , et al. Regulation of adipocyte differentiation by activation of serotonin (5-ht) receptors 5-ht2ar and 5-ht2cr and involvement of microrna-448-mediated repression of klf5. Mol Endocrinol 2010; 24: 19781987.

57.M Terán-García , C Bouchard . Genetics of the metabolic syndrome. Appl Physiol Nutr Metab 2007; 32: 89114.

58.MM Boucek , LB Edwards , BM Keck , EP Trulock , DO Taylor , MI Hertz . Registry for the international society for heart and lung transplantation: seventh official pediatric report–2004. J Heart Lung Transplant 2004; 23: 933947.

59.JD Kay , SD Colan , TP Graham Jr. Congestive heart failure in pediatric patients. Am Heart J 2001; 142: 923928.

60.AJ Tijsen , YM Pinto , EE Creemers . Non-cardiomyocyte microRNAs in heart failure. Cardiovasc Res 2012; 93: 573582.

62.G Mathonnet , MR Fabian , YV Svitkin , et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 2007; 317: 17641767.

63.SJ Matkovich , DJ Van Booven , KA Youker , et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 2009; 119: 12631271.

65.A Ernst , B Campos , J Meier , et al. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 2010; 29: 34113422.

66.MW Schellings , D Vanhoutte , GC van Almen , et al. Syndecan-1 amplifies angiotensin ii-induced cardiac fibrosis. Hypertension 2010; 55: 249256.

70.S Reddy , M Zhao , DQ Hu , et al. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 2012; 44: 562575.

71.R Kumarswamy , AR Lyon , I Volkmann , et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 2012; 33: 10671075.

72.S Ikeda , A He , SW Kong , et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 2009; 29: 21932204.

73.X Luo , H Lin , Z Pan , et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 2008; 283: 2004520052.

74. ACare , DCatalucci , FFelicetti , et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13: 613618.

77. HFXu , YJDing , YWShen , et al. MicroRNA-1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem 2012; 362: 141148.

79. MFCorsten , APapageorgiou , WVerhesen , et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res 2012; 111: 415425.

80. JAJansen , TAvan Veen , JMde Bakker , HVvan Rijen . Cardiac connexins and impulse propagation. J Mol Cell Cardiol 2010; 48: 7682.

82. PKRao , YToyama , HRChiang , et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009; 105: 585594.

83.E van Rooij , LB Sutherland , N Liu , et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006; 103: 1825518260.

86.M Palacin , JR Reguero , M Martin , et al. Profile of microRNAs differentially produced in hearts from patients with hypertrophic cardiomyopathy and sarcomeric mutations. Clin Chem 2011; 57: 16141616.

89. MMMassin , ABenatar , GRondia . Epidemiology and outcome of tachyarrhythmias in tertiary pediatric cardiac centers. Cardiology 2008; 111: 191196.

93.G Serwer . Ventricular arrhythmia in children: diagnosis and management. Curr Treat Options Cardiovasc Med 2008; 10: 4424427.

94.AS Amin , JR Giudicessi , AJ Tijsen , et al. Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J 2012; 33: 714723.

96.B Yang , H Lin , J Xiao , et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007; 13: 486491.

98.Z Yu , S Han , P Hu , et al. Potential role of maternal serum microRNAs as a biomarker for fetal congenital heart defects. Med Hypotheses 2011; 76: 424426.

100.J Xu , Z Hu , Z Xu , et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat 2009; 30: 12311236.

104.M Hoekstra , CA van der Lans , B Halvorsen , et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 2010; 394: 792797.

108. ADavalos , LGoedeke , PSmibert , et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 2011; 108: 92329237.

109.C Esau , S Davis , SF Murray , et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 8798.

110.ED Rosen , OA MacDougald . Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7: 885896.

113.R Mishra , K Vijayan , EJ Colletti , et al. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 2011; 123: 364373.

114.SK Mallanna , A Rizzino . Emerging roles of micrornas in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 2010; 344: 1625.

115.L Gan , S Schwengberg , B Denecke . MicroRNA profiling during cardiomyocyte-specific differentiation of murine embryonic stem cells based on two different miR array platforms. PLoS One 2011; 6: e25809.

117.LC Laurent , J Chen , I Ulitsky , et al. Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 2008; 26: 15061516.

118. ULakshmipathy , JDavila , RPHart . miRNA in pluripotent stem cells. Regen Med 2010; 5: 545555.

119.L Wei , M Wang , X Qu , et al. Differential expression of microRNAs during allograft rejection. Am J Transplant 2012; 12: 11131123.

121.EM Small , EN Olson . Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336342.

122.SM Evans , A Moretti , KL Laugwitz . MicroRNAs in a cardiac loop: progenitor or myocyte? Dev Cell 2010; 19: 787788.

123.NM Kane , L Howard , B Descamps , et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 2012; 30: 643654.

125. JDFu , SNRushing , DKLieu , et al. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 2011; 6: e27417.

126.T Hosoda , H Zheng , M Cabral-da-Silva , et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 2011; 123: 12871296.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: