Skip to main content Accesibility Help

Echocardiography in sickle cell anaemia patients under 20 years of age: a descriptive study in the Brazilian Western Amazon

  • Melissa C. V. Ribera (a1), Ricardo B. Ribera (a2), Rosalina J. Koifman (a3) and Sérgio Koifman (a3)

Cardiac abnormalities in sickle cell anaemia are frequent and early, despite being more evident in adulthood. The study on cardiac abnormalities is essential in the current context, as, owing to improved health, children are increasingly able to reach adulthood and suffering the consequences of chronic cardiac injury.


The aim of this study was to determine the prevalence of echocardiographic changes in patients under 20, suffering from sickle cell disease in Rio Branco, Brazilian Western Amazon.


The descriptive epidemiological study compare two sets of children and adolescents, one including sickle cell anaemia patients (n=45), and other one (n=109) without sickle cell anaemia or heart disease. The echocardiographic measurements were indexed according to body surface using z-scores, and the prevalence of echocardiographic changes in both groups, with their respective 95% confidence intervals, ascertained and compared.


Compared with the non-sickle cell anaemia series, the sickle cell anaemia group showed z-scores 13.1-fold higher for the diastolic diameter of the left ventricle, 5.2 times higher for the thickness of the posterior wall, 4.9 higher for the left atrium, 2.5 times higher for the right ventricle and 2.0 times higher for the septum thickness. Also the rate of left ventricular mass, systolic pressure of the right ventricle and the relative wall thickness were significantly higher in sickle cell anaemia set.


Cardiac abnormalities were observed in 93.5% of patients. Early detection of cardiac abnormalities and quantifying them using the indexation of echocardiographic measurements according to body surface will allow proper identification and attendance of these children.

Corresponding author
Correspondence to: M. C. V. Ribera, Department of Health Science and Sport, Acre Federal University, Rodovia BR 364, Km 4, Distrito Industrial, Rio Branco – Acre, Brazil. CEP 69.915-900. Tel: +55(68)84133005; Fax: +55(68)3901-1246; E-mail:
Hide All
1. Naoum, PC. Hemoglobinopatias e Talassemias. São Paulo: Sarvier; 1997: 137143.
2. Silva, RBP, Ramalho, AS, Cassorla, RMS. A anemia falciforme como problema de saúde pública no Brasil. Rev Saúde Pública 1993; 27: 5458.
3. Zago, MA, Costa, FF. Hereditary hemoglobin disorders in Brazil. Trans R Soc Trop Med Hyg 1995; 79: 385388.
4. Di Nuzzo, DVP, Fonseca, SF. Anemia falciforme e infecções. J Pediatria 2004; 80: 347354.
5. Watanabe, AM. Prevalência de Anemia Falciforme no Estado do Paraná. 2007.122f. Dissertação (Mestrado) – Universidade Federal do Paraná, Curitiba, 2007.
6. BRASIL. Ministério da Saúde. Manual de Educação em Saúde. Secretaria de Atenção à Saúde, Departamento de Atenção Especializada (Health Ministry, Secretary of healthcare, Manual health education). Brasília: Ministério da Saúde 2009; v. 2: 13.
7. Ahmed, S, Siddiqui, AK, Sadiq, A, Shahid, RK, Patel, DV, Russo, LA. Echocardiographic abnormalities in sickle cell disease. Am J Hematol 2004; 76: 195198.
8. Covitz, W, Esperland, M, Gallagher, D, Hellenbrand, W, Leff, S, Talner, N. The heart in sickle cell anemia: the cooperative study of sickle cell disease. Chest 1995; 108: 12141219.
9. Lamers, L, Ensing, G, Pignatelli, R, et al. Evaluation of left ventricular systolic function in pediatric sickle cell anemia patients using the end-systolic wall stress-velocity of circumferential fiber shortening relationship. J Am Coll Cardiol 2006; 47: 22832288.
10. Lester, LA, Sodt, PC, Hutcheon, N, Arcilla, RA. Cardiac abnormalities in children with sickle cell anemia. Chest 1990; 98: 11691174.
11. Grossman, W, Braunwald, E, Mann, T, McLaurin, LP, Green, LH. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 1977; 56: 845852.
12. Batra, AS, Acherman, RJ, Wong, W, et al. Cardiac abnormalities in children with sickle cell anemia. Am J Hematol 2002; 70: 306312.
13. Hutz, MH. História natural da anemia falciforme em pacientes da região metropolitana do Rio de Janeiro (Tese Doutorado em Ciências). UFRGS, Porto Alegre, 1981: 275.
14. Martins, WA, Mesquita, ET., Cunha, DM, Pinheiro, LAF, Romêo, LJMF, Pareto, RC Jr. Estudo ecodopplercardiográfico em adolescentes e adultos jovens portadores de anemia falciforme. Arq Bras Cardiol 1999; 73: 463468.
15. Estrade, G, Poitrineau, O, Bernasconi, F, Garnier, D, Donatien, Y. Fonction ventriculaire gauche et drépanocytose. Arch Mal Coeur 1989; 82: 19751981.
16. Herdy, GVH, Aguas, AFF, Chedid, TC. Alterações cardíacas na anemia falciforme. Arq Bras Cardiol 1983; 40: 311315.
17. Sachdev, V, Machado, RF, Shizukuda, Y, et al. Diastolic dysfunction is an independent risk factor for death in patients with sickle cell disease. J Am Coll Cardiol 2007; 49: 472479.
18. Hassell, KL. Population estimates of sickle cell disease in the U.S. Am J Prev Med 2010; 38: S512S521.
19. Lang, RM, Bierig, M, Devereux, RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18: 14401463.
20. Daubeney, PEF, Blacksone, EH, Weintraub, RG, Slavik, Z, Scanlon, J, Webber, SA Relationship of the dimension of cardiac structures to body size: an echocardiographic study in normal infants and children. Cardiology in the Young 1999; 9: 402410.
21. Tei, C, Nishimura, RA, Seward, JB, Tajik, AJ. Non-invasive Doppler derived myocardial performance índex: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr 1997; 10: 169178.
22. Devereux, RB, Alonso, DR, Lutas, EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450458.
23. Gladwin, MT, Sachdev, V, Jison, ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med 2004; 350: 886895.
24. Ganau, A, Devereux, RB, Roman, MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 1992; 19: 15501558.
25. Paul, LW, Juhl, JH. Princípio de Interpretação Radiológica, 6th edn. Rio de Janeiro, Guanabara, 1980: 883.
26. Minniti, CP, Sable, C, Campbell, A, et al. Elevated tricuspid regurgitant jet velocity in children and adolescents with sickle cell disease: association with hemolysis and hemoglobin oxygen desaturation. Haematol 2009; 94: 340347.
27. Kato, GJ, Onyekwere, OC, Gladwin, MT. Pulmonary hypertension in sickle cell disease: relevance to children. Pediatric Hematol Oncol 2007; 24: 159170.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed