Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    McKenney, Stephanie L. Mansouri, Fahad F. Everett, Allen D. Graham, Ernest M. Burd, Irina and Sekar, Priya 2016. Glial fibrillary acidic protein as a biomarker for brain injury in neonatal CHD. Cardiology in the Young, Vol. 26, Issue. 07, p. 1282.


    Hori, Daijiro Everett, Allen D. Lee, Jennifer K. Ono, Masahiro Brown, Charles H. Shah, Ashish S. Mandal, Kaushik Price, Joel E. Lester, Laeben C. and Hogue, Charles W. 2015. Rewarming Rate During Cardiopulmonary Bypass Is Associated With Release of Glial Fibrillary Acidic Protein. The Annals of Thoracic Surgery, Vol. 100, Issue. 4, p. 1353.


    Vedovelli, Luca Padalino, Massimo Simonato, Manuela D'Aronco, Sara Bertini, Diana Stellin, Giovanni Ori, Carlo Carnielli, Virgilio P. and Cogo, Paola E. 2016. Cardiopulmonary Bypass Increases Plasma Glial Fibrillary Acidic Protein Only in First Stage Palliation of Hypoplastic Left Heart Syndrome. Canadian Journal of Cardiology, Vol. 32, Issue. 3, p. 355.


    Magruder, J. Trent Hibino, Narutoshi Collica, Sarah Zhang, Huaitao Harness, H. Lynn Heitmiller, Eugenie S. Jacobs, Marshall L. Cameron, Duke E. Vricella, Luca A. and Everett, Allen D. 2016. Association of nadir oxygen delivery on cardiopulmonary bypass with serum glial fibrillary acid protein levels in paediatric heart surgery patients. Interactive CardioVascular and Thoracic Surgery, p. ivw194.


    ×

Glial fibrillary acidic protein in children with congenital heart disease undergoing cardiopulmonary bypass

  • Marissa A. Brunetti (a1), Jacky M. Jennings (a2), R. Blaine Easley (a3), Melania Bembea (a1), Anna Brown (a1), Eugenie Heitmiller (a1), Jamie M. Schwartz (a1), Ken M. Brady (a3), Luca A. Vricella (a4) and Allen D. Everett (a5)
  • DOI: http://dx.doi.org/10.1017/S1047951113000851
  • Published online: 11 July 2013
Abstract
Abstract

Objective: To determine whether blood levels of the brain-specific biomarker glial fibrillary acidic protein rise during cardiopulmonary bypass for repair of congenital heart disease. Methods: This is a prospective observational pilot study to characterise the blood levels of glial fibrillary acidic protein during bypass. Children <21 years of age undergoing bypass for congenital heart disease at Johns Hopkins Hospital and Texas Children's Hospital were enrolled. Blood samples were collected during four phases: pre-bypass, cooling, re-warming, and post-bypass. Results: A total of 85 patients were enrolled between October, 2010 and May, 2011. The median age was 0.73 years (range 0.01–17). The median weight was 7.14 kilograms (range 2.2–86.5). Single ventricle anatomy was present in 18 patients (22%). Median glial fibrillary acidic protein values by phase were: pre-bypass: 0 ng/ml (range 0–0.35); cooling: 0.039 (0–0.68); re-warming: 0.165 (0–2.29); and post-bypass: 0.112 (0–0.97). There were significant elevations from pre-bypass to all subsequent stages, with the greatest increase during re-warming (p = 0.0001). Maximal levels were significantly related to younger age (p = 0.03), bypass time (p = 0.03), cross-clamp time (p = 0.047), and temperature nadir (0.04). Peak levels did not vary significantly in those with single ventricle anatomy versus two ventricle repairs. Conclusion: There are significant increases in glial fibrillary acidic protein levels in children undergoing cardiopulmonary bypass for repair of congenital heart disease. The highest values were seen during the re-warming phase. Elevations are significantly associated with younger age, bypass and cross-clamp times, and temperature nadir. Owing to the fact that glial fibrillary acidic protein is the most brain-specific biomarker identified to date, it may act as a rapid diagnostic marker of brain injury during cardiac surgery.

Copyright
Corresponding author
Correspondence to: M. A. Brunetti, MD, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 34th and Civic Center Blvd. 7 South Tower 7C26, Philadelphia, PA 19104, United States of America. Tel: +215-590-2365; Fax: +215-590-4620; E-mail: brunettim@email.chop.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.ED McKenzie , DB Andropoulos , D DiBardino , CD Fraser . Congenital heart surgery 2005: the brain: it's the heart of the matter. Am J Surg 2005; 190: 289294.

3.A Sarajuuri , E Jokinen , R Puosi , et al. Neurodevelopmental and neuroradiologic outcomes in patients with univentricular heart aged 5 to 7 years: related risk factor analysis. J Thorac Cardiovasc Surg 2007; 133: 15241532.

4.JK Lee , RB Easley , KM Brady . Neurocognitive monitoring and care during pediatric cardiopulmonary bypass-current and future directions. Curr Cardiol Rev 2008; 4: 123139.

29.PS McQuillen , AJ Barkovich , SE Hamrick , et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 2007; 38: 736741.

6.AJ Shillingford , MM Glanzman , RF Ittenbach , et al. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 2008; 121: e759e767.

7.HH Hovels-Gurich , MC Seghaye , M Sigler , et al. Neurodevelopmental outcome related to cerebral risk factors in children after neonatal arterial switch operation. Ann Thorac Surg 2001; 71: 881888.

8.B Schmitt , U Bauersfeld , ER Schmid , et al. Serum and CSF levels of neuron-specific enolase in cardiac surgery with cardiopulmonary bypass: a marker of brain injury? Brain Dev 1998; 20: 536539.

9.LS Rasmussen , F Sztuk , M Christiansen , MJ Elliot . Normothermic versus hypothermic cardiopulmonary bypass during repair of congenital heart disease. J Cardiothorac Vasc Anesth 2001; 15: 563566.

10.RE Anderson , LO Hansson , O Nilsson , et al. Increase in serum S100A1-B and S100BB during cardiac surgery arises from extracerebral sources. Ann Thorac Surg 2001; 71: 15121517.

11.D Lardner , A Davidson , I McKenzie , A Cochrane . Delayed rises in S100β levels and adverse neurological outcome in infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth 2004; 14: 495500.

12.MA Erb , MK Heinemann , HP Wendel , et al. S-100 after correction of congenital heart defects in neonates: is it a reliable marker for cerebral damage? Ann Thorac Surg 200; 69: 15151519.

13.S Mondello , L Papa , A Buki , et al. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care 2011; 15: R156.

14.LE Pelinka , A Kroepfl , R Schmidhammer , et al. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J of Trauma 2004; 57: 10061012.

15.K Nylen , M Ost , LZ Csajbok , et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J of Neuro Sci 2006; 240: 8591.

17.F Dvorak , I Haberer , M Sitzer , C Foerch . Characterization of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 2009; 27: 3741.

18.KS Panickar , MD Norenberg . Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 2005; 50: 287298.

19.M Bembea , WJ Savage , JJ Strouse , et al. Glial fibrillary acidic protein as a brain injury biomarker in children undergoing extracorporeal membrane oxygenation. Pediatr Crit Care Med 2011; 12: 572579.

20.CS Ennen , TA Huisman , WJ Savage , et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole body cooling. Am J Obstet Gynecol 2011; 205: 251e1251e7.

21.A Stewart , A Tekes , TA Huisman , et al. Glial fibrillary acidic protein as a biomarker for periventricular white matter injury. Am J Obstet Gynecol 2013, March Epub ahead of print.

22.WJ Savage , E Barron-Casella , Z Fu , et al. Plasma glial fibrillary acidic protein levels in children with sickle cell disease. Am J of Hematology 2011; 86: 427429.

23.MG Gaies , JG Gurney , AH Yen , et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010; 11: 234238.

24.MT Wunderlich , CW Wallesch , M Goertler . Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke. Euro J Neurol 2006; 13: 11181123.

25.M Herrmann , P Vos , MT Wunderlich , et al. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000; 31: 26702677.

26.J McHarg , R Ringel , J Coulson , et al. Biomarker assessment of brain injury in the cardiac catheterization laboratory. J Am Coll Cardiol 2011; 57: E417.

27.U Missler , N Orlowski , A Notzold , et al. Early elevation of S-100B protein in blood after cardiac surgery is not a predictor of ischemic cerebral injury. Clin Chim Acta 2002; 321: 2933.

30.SP Miller , PS McQuillen , S Hamrick , et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357: 19281938.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: