Skip to main content

Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries

  • Andrew C. Argent (a1) (a2), Rakhi Balachandran (a3), Balu Vaidyanathan (a4), Amina Khan (a5) and R. Krishna Kumar (a4)...

Poor growth with underweight for age, decreased length/height for age, and underweight-for-height are all relatively common in children with CHD. The underlying causes of this failure to thrive may be multifactorial, including innate growth potential, severity of cardiac disease, increased energy requirements, decreased nutritional intake, malabsorption, and poor utilisation of absorbed nutrition. These factors are particularly common and severe in low- and middle-income countries.

Although nutrition should be carefully assessed in all patients, failure of growth is not a contraindication to surgical repair, and patients should receive surgical repair where indicated as soon as possible.

Close attention should be paid to nutritional support – primarily enteral feeding, with particular use of breast milk in infancy – in the perioperative period and in the paediatric ICU. This nutritional support requires specific attention and allocation of resources, including appropriately skilled personnel.

Thereafter, it is essential to monitor growth and development and to identify causes for failure to catch-up or grow appropriately.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence to: A. C. Argent, Professor, School of Child and Adolescent Health, University of Cape Town and, Medical Director, Pediatric Intensive Care, Red Cross War Memorial Children’s Hospital, Klipfontein Road, Rondebosch, Cape Town 7700, South Africa. Tel: +27 21 658 5369; Fax: +27 21 689 1287; E-mail:
Hide All
1. Unger, R, DeKleermaeker, M, Gidding, SS, Christoffel, KK. Calories count. Improved weight gain with dietary intervention in congenital heart disease. Am J Dis Child 1992; 146: 10781084.
2. Arodiwe, I, Chinawa, J, Ujunwa, F, Adiele, D, Ukoha, M, Obidike, E. Nutritional status of congenital heart disease (CHD) patients: burden and determinant of malnutrition at university of Nigeria teaching hospital Ituku – Ozalla, Enugu. Pak J Med Sci 2015; 31: 11401145.
3. Cameron, JW, Rosenthal, A, Olson, AD. Malnutrition in hospitalized children with congenital heart disease. Arch Pediatr Adolesc Med 1995; 149: 10981102.
4. Okoromah, CA, Ekure, EN, Lesi, FE, Okunowo, WO, Tijani, BO, Okeiyi, JC. Prevalence, profile and predictors of malnutrition in children with congenital heart defects: a case-control observational study. Arch Dis Child 2011; 96: 354360.
5. Toole, BJ, Toole, LE, Kyle, UG, Cabrera, AG, Orellana, RA, Coss-Bu, JA. Perioperative nutritional support and malnutrition in infants and children with congenital heart disease. Congenit Heart Dis 2014; 9: 1525.
6. Vaidyanathan, B, Nair, SB, Sundaram, KR, et al. Malnutrition in children with congenital heart disease (CHD) determinants and short term impact of corrective intervention. Indian Pediatr 2008; 45: 541546.
7. Varan, B, Tokel, K, Yilmaz, G. Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension. Arch Dis Child 1999; 81: 4952.
8. Venugopalan, P, Akinbami, FO, Al-Hinai, KM, Agarwal, AK. Malnutrition in children with congenital heart defects. Saudi Med J 2001; 22: 964967.
9. Villasis-Keever, MA, Aquiles Pineda-Cruz, R, Halley-Castillo, E, Alva-Espinosa, C. Frequency and risk factors associated with malnutrition in children with congenital cardiopathy. Salud Publica Mex 2001; 43: 313323.
10. Leite, HP, Fisberg, M, Novo, NF, Nogueira, EB, Ueda, IK. Nutritional assessment and surgical risk markers in children submitted to cardiac surgery. Sao Paulo Med J 1995; 113: 706714.
11. Ehlers, KH. Growth failure in association with congenital heart disease. Pediatr Ann 1978; 7: 750759.
12. Anderson, JB, Beekman, RH 3rd, Border, WL, et al. Lower weight-for-age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J Thorac Cardiovasc Surg 2009; 138: 397404.e391.
13. Schwalbe-Terilli, CR, Hartman, DH, Nagle, ML, et al. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care 2009; 18: 5257.
14. Tchervenkov, CI, Jacobs, JP, Bernier, PL, et al. The improvement of care for paediatric and congenital cardiac disease across the world: a challenge for the World Society for Pediatric and Congenital Heart Surgery. Cardiol Young 2008; 18 (Suppl 2): 6369.
15. Jenkins, KJ, Castaneda, AR, Cherian, KM, et al. Reducing mortality and infections after congenital heart surgery in the developing world. Pediatrics 2014; 134: e1422e1430.
16. Vaidyanathan, B, Roth, SJ, Rao, SG, Gauvreau, K, Shivaprakasha, K, Kumar, RK. Outcome of ventricular septal defect repair in a developing country. J Pediatr 2002; 140: 736741.
17. Reddy, NS, Kappanayil, M, Balachandran, R, et al. Preoperative determinants of outcomes of infant heart surgery in a limited-resource setting. Semin Thorac Cardiovasc Surg 2015; 27: 331338.
18. Bernier, PL, Stefanescu, A, Samoukovic, G, Tchervenkov, CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2010; 13: 2634.
19. Global Database on Child Growth and Malnutrition [Online]. 2017. Retrieved April 17, 2017 from
20. Van den Broeck, J, Meulemans, W, Eeckels, R. Nutritional assessment: the problem of clinical-anthropometrical mismatch. Eur J Clin Nutr 1994; 48: 6065.
21. Green Corkins, K. Nutrition-focused physical examination in pediatric patients. Nutr Clin Pract 2015; 30: 203209.
22. Mehta, NM, Corkins, MR, Lyman, B, et al. Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. JPEN J Parenter Enteral Nutr 2013; 37: 460481.
23. Becker, P, Carney, LN, Corkins, MR, et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: indicators recommended for the identification and documentation of pediatric malnutrition (undernutrition). Nutr Clin Pract 2015; 30: 147161.
24. Blasquez, A, Clouzeau, H, Fayon, M, et al. Evaluation of nutritional status and support in children with congenital heart disease. Eur J Clin Nutr 2016; 70: 528531.
25. Yahav, J, Avigad, S, Frand, M, et al. Assessment of intestinal and cardiorespiratory function in children with congenital heart disease on high-caloric formulas. J Pediatr Gastroenterol Nutr 1985; 4: 778785.
26. Thommessen, M, Heiberg, A, Kase, BF. Feeding problems in children with congenital heart disease: the impact on energy intake and growth outcome. Eur J Clin Nutr 1992; 46: 457464.
27. Hansen, SR, Dorup, I. Energy and nutrient intakes in congenital heart disease. Acta Paediatr 1993; 82: 166172.
28. Nicholson, GT, Clabby, ML, Kanter, KR, Mahle, WT. Caloric intake during the perioperative period and growth failure in infants with congenital heart disease. Pediatr Cardiol 2013; 34: 316321.
29. Menon, G, Poskitt, EM. Why does congenital heart disease cause failure to thrive? Arch Dis Child 1985; 60: 11341139.
30. Barton, JS, Hindmarsh, PC, Scrimgeour, CM, Rennie, MJ, Preece, MA. Energy expenditure in congenital heart disease. Arch Dis Child 1994; 70: 59.
31. Mitchell, IM, Davies, PS, Day, JM, Pollock, JC, Jamieson, MP. Energy expenditure in children with congenital heart disease, before and after cardiac surgery. J Thorac Cardiovasc Surg 1994; 107: 374380.
32. Goulart, MR, Schuh, DS, Moraes, DW, Barbiero, SM, Pellanda, LC. Serum C-reactive protein levels and body mass index in children and adolescents with CHD. Cardiol Young 2017; 27: 10831089.
33. Mehrizi, A, Drash, A. Growth disturbance in congenital heart disease. J Pediatr 1962; 61: 418429.
34. Weintraub, RG, Menahem, S. Growth and congenital heart disease. J Paediatr Child Health 1993; 29: 9598.
35. Ackerman, IL, Karn, CA, Denne, SC, Ensing, GJ, Leitch, CA. Total but not resting energy expenditure is increased in infants with ventricular septal defects. Pediatrics 1998; 102: 11721177.
36. Salzer, HR, Haschke, F, Wimmer, M, Heil, M, Schilling, R. Growth and nutritional intake of infants with congenital heart disease. Pediatr Cardiol 1989; 10: 1723.
37. Matthiesen, NB, Henriksen, TB, Gaynor, JW, et al. Congenital heart defects and indices of fetal cerebral growth in a nationwide cohort of 924 422 liveborn infants. Circulation 2016; 133: 566575.
38. Villares, JM, Leal, LO, Diaz, IS, Gonzalez, PG. Plasma aminogram in infants operated on complex congenital heart disease. Nutr Hosp 2008; 23: 283287.
39. Leite, HP, de Camargo Carvalho, AC, Fisberg, M. Nutritional status of children with congenital heart disease and left-to-right shunt. The importance of the presence of pulmonary hypertension. Arq Bras Cardiol 1995; 65: 403407.
40. Steier, M, Lopez, R, Cooperman, JM. Riboflavin deficiency in infants and children with heart disease. Am Heart J 1976; 92: 139143.
41. Finnerty, CC, Mabvuure, NT, Ali, A, Kozar, RA, Herndon, DN. The surgically induced stress response. JPEN J Parenter Enteral Nutr 2013; 37: 21s29s.
42. Teixeira-Cintra, MA, Monteiro, JP, Tremeschin, M, Trevilato, TM, Halperin, ML, Carlotti, AP. Monitoring of protein catabolism in neonates and young infants post-cardiac surgery. Acta Paediatr 2011; 100: 977982.
43. Mehta, NM, Costello, JM, Bechard, LJ, et al. Resting energy expenditure after Fontan surgery in children with single-ventricle heart defects. JPEN J Parenter Enteral Nutr 2012; 36: 685692.
44. Jones, MO, Pierro, A, Hammond, P, Lloyd, DA. The effect of major operations on heart rate, respiratory rate, physical activity, temperature and respiratory gas exchange in infants. Eur J Pediatr Surg 1995; 5: 912.
45. Hardin, JT, Muskett, AD, Canter, CE, Martin, TC, Spray, TL. Primary surgical closure of large ventricular septal defects in small infants. Ann Thorac Surg 1992; 53: 397401.
46. Brooks, A, Geldenhuys, A, Zuhlke, L, Human, P, Zilla, P. Pulmonary artery banding: still a valuable option in developing countries? Eur J Cardiothorac Surg 2012; 41: 272276.
47. Jackson, M, Poskitt, EM. The effects of high-energy feeding on energy balance and growth in infants with congenital heart disease and failure to thrive. Br J Nutr 1991; 65: 131143.
48. Bougle, D, Iselin, M, Kahyat, A, Duhamel, JF. Nutritional treatment of congenital heart disease. Arch Dis Child 1986; 61: 799801.
49. Vanderhoof, JA, Hofschire, PJ, Baluff, MA, et al. Continuous enteral feedings. An important adjunct to the management of complex congenital heart disease. Am J Dis Child 1982; 136: 825827.
50. Schwarz, SM, Gewitz, MH, See, CC, et al. Enteral nutrition in infants with congenital heart disease and growth failure. Pediatrics 1990; 86: 368373.
51. Skillman, HE, Mehta, NM. Nutrition therapy in the critically ill child. Curr Opinion Crit Care 2012; 18: 192198.
52. Zamberlan, P, Delgado, AF, Leone, C, Feferbaum, R, Okay, TS. Nutrition therapy in a pediatric intensive care unit: indications, monitoring, and complications. JPEN J Parenter Enteral Nutr 2011; 35: 523529.
53. Mehta, NM. Approach to enteral feeding in the PICU. Nutr Clin Pract 2009; 24: 377387.
54. Meert, KL, Daphtary, KM, Metheny, NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest 2004; 126: 872878.
55. Natarajan, G, Reddy Anne, S, Aggarwal, S. Enteral feeding of neonates with congenital heart disease. Neonatology 2010; 98: 330336.
56. Fivez, T, Kerklaan, D, Mesotten, D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med 2016; 374: 11111122.
57. Jeffries, HE, Wells, WJ, Starnes, VA, Wetzel, RC, Moromisato, DY. Gastrointestinal morbidity after Norwood palliation for hypoplastic left heart syndrome. Ann Thorac Surg 2006; 81: 982987.
58. Giannone, PJ, Luce, WA, Nankervis, CA, Hoffman, TM, Wold, LE. Necrotizing enterocolitis in neonates with congenital heart disease. Life Sci 2008; 82: 341347.
59. Owens, JL, Musa, N. Nutrition support after neonatal cardiac surgery. Nutr Clin Pract 2009; 24: 242249.
60. De Wit, B, Meyer, R, Desai, A, Macrae, D, Pathan, N. Challenge of predicting resting energy expenditure in children undergoing surgery for congenital heart disease. Pediatr Crit Care Med 2010; 11: 496501.
61. Torowicz, DL, Seelhorst, A, Froh, EB, Spatz, DL. Human milk and breastfeeding outcomes in infants with congenital heart disease. Breastfeed Med 2015; 10: 3137.
62. Sullivan, S, Schanler, RJ, Kim, JH, et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr 2010; 156: 562567.e561.
63. Hofner, G, Behrens, R, Koch, A, Singer, H, Hofbeck, M. Enteral nutritional support by percutaneous endoscopic gastrostomy in children with congenital heart disease. Pediatr Cardiol 2000; 21: 341346.
64. El-Sayed Ahmed, MM, Alfares, FA, Hynes, CF, et al. Timing of gastrostomy tube feeding in three-stage palliation of single-ventricle physiology. Congenit Heart Dis 2016; 11: 3438.
65. Lee, JH, Rogers, E, Chor, YK, et al. Optimal nutrition therapy in paediatric critical care in the Asia-Pacific and Middle East: a consensus. Asia Pacific J Clin Nutr 2016; 25: 676696.
66. Hamilton, S, McAleer, DM, Ariagno, K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals. Pediatr Crit Care Med 2014; 15: 583589.
67. Martinez, EE, Smallwood, CD, Bechard, LJ, Graham, RJ, Mehta, NM. Metabolic assessment and individualized nutrition in children dependent on mechanical ventilation at home. J Pediatr 2015; 166: 350357.
68. Mehta, NM, Bechard, LJ, Cahill, N, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children – an international multicenter cohort study. Crit Care Med 2012; 40: 22042211.
69. Mehta, NM, Bechard, LJ, Zurakowski, D, Duggan, CP, Heyland, DK. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr 2015; 102: 199206.
70. Martinez, EE, Bechard, LJ, Mehta, NM. Nutrition algorithms and bedside nutrient delivery practices in pediatric intensive care units: an international multicenter cohort study. Nutr Clin Pract 2014; 29: 360367.
71. Balachandran, R, Nair, SG, Gopalraj, SS, Vaidyanathan, B, Kumar, RK. Dedicated pediatric cardiac intensive care unit in a developing country: Does it improve the outcome? Ann Pediatr Cardiol 2011; 4: 122126.
72. Ramakrishnan, N, Shankar, B, Ranganathan, L, Daphnee, DK, Bharadwaj, A, Venkataraman, R. Parenteral nutrition support: beyond gut feeling? Quality control study of parenteral nutrition practices in a tertiary care hospital. Indian J Crit Care Med 2016; 20: 3639.
73. Heine, RG, Bines, JE. New approaches to parenteral nutrition in infants and children. J Paediatr Child Health 2002; 38: 433437.
74. Koletzko, B, Goulet, O, Hunt, J, Krohn, K, Shamir, R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005; 41 (Suppl 2): S1S87.
75. Boullata, JI, Gilbert, K, Sacks, G, et al. A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN J Parenter Enteral Nutr 2014; 38: 334377.
76. Cheung, MM, Davis, AM, Wilkinson, JL, Weintraub, RG. Long term somatic growth after repair of tetralogy of Fallot: evidence for restoration of genetic growth potential. Heart 2003; 89: 13401343.
77. Vaidyanathan, B, Roth, SJ, Gauvreau, K, Shivaprakasha, K, Rao, SG, Kumar, RK. Somatic growth after ventricular septal defect in malnourished infants. J Pediatr 2006; 149: 205209.
78. Vaidyanathan, B, Radhakrishnan, R, Sarala, DA, Sundaram, KR, Kumar, RK. What determines nutritional recovery in malnourished children after correction of congenital heart defects? Pediatrics 2009; 124: e294e299.
79. Medoff-Cooper, B, Ravishankar, C. Nutrition and growth in congenital heart disease: a challenge in children. Curr Opin Cardiol 2013; 28: 122129.
80. Glockler, M, Severin, T, Arnold, R, et al. First description of three patients with multifocal lymphangiomatosis and protein-losing enteropathy following palliation of complex congenital heart disease with total cavo-pulmonary connection. Pediatr Cardiol 2008; 29: 771774.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Argent et al supplementary material
Argent et al supplementary material

 Word (83 KB)
83 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed