Skip to main content Accessibility help
×
×
Home

Pharmacokinetics of intravenous sildenafil in children with palliated single ventricle heart defects: effect of elevated hepatic pressures

  • Kevin D. Hill (a1) (a2), Mario R. Sampson (a2) (a3), Jennifer S. Li (a2), Robert D. Tunks (a1), Scott R. Schulman (a4) and Michael Cohen-Wolkowiez (a2)...
Abstract
Aims

Sildenafil is frequently prescribed to children with single ventricle heart defects. These children have unique hepatic physiology with elevated hepatic pressures, which may alter drug pharmacokinetics. We sought to determine the impact of hepatic pressure on sildenafil pharmacokinetics in children with single ventricle heart defects.

Methods

A population pharmacokinetic model was developed using data from 20 single ventricle children receiving single-dose intravenous sildenafil during cardiac catheterisation. Non-linear mixed effect modelling was used for model development, and covariate effects were evaluated based on estimated precision and clinical significance.

Results

The analysis included a median (range) of 4 (2–5) pharmacokinetic samples per child. The final structural model was a two-compartment model for sildenafil with a one-compartment model for des-methyl-sildenafil (active metabolite), with assumed 100% sildenafil to des-methyl-sildenafil conversion. Sildenafil clearance was unaffected by hepatic pressure (clearance=0.62 L/hour/kg); however, clearance of des-methyl-sildenafil (1.94×(hepatic pressure/9)−1.33 L/hour/kg) was predicted to decrease ~7-fold as hepatic pressure increased from 4 to 18 mmHg. Predicted drug exposure was increased by ~1.5-fold in subjects with hepatic pressures ⩾10 versus <10 mmHg (median area under the curve=533 versus 792 µg*h/L).

Discussion

Elevated hepatic pressure delays clearance of the sildenafil metabolite – des-methyl-sildenafil – and increases drug exposure. We speculate that this results from impaired biliary clearance. Hepatic pressure should be considered when prescribing sildenafil to children. These data demonstrate the importance of pharmacokinetic assessments in patients with unique cardiovascular physiology that may affect drug metabolism.

Copyright
Corresponding author
Correspondence to: Dr K. D. Hill, MD, 7506 Hospital North, DUMC Box 3090, Durham, NC 27710, United States of America. Tel: +919.668.8305; Fax: +919.681.8927; E-mail: kevin.hill@duke.edu
Footnotes
Hide All
*

Equal contributors.

Footnotes
References
Hide All
1. Jackson, SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23: 687696.
2. Gewillig, M. The Fontan circulation. Heart 2005; 91: 839846.
3. Narkewicz, MR, Sondheimer, HM, Ziegler, JW, et al. Hepatic dysfunction following the Fontan procedure. J Pediatr Gastroenterol Nutr 2003; 36: 352357.
4. Rychik, J, Veldtman, G, Rand, E, et al. The precarious state of the liver after a Fontan operation: summary of a multidisciplinary symposium. Pediatr Cardiol 2012; 33: 10011012.
5. Wu, FM, Ukomadu, C, Odze, RD, et al. Liver disease in the patient with Fontan circulation. Congenit Heart Dis 2011; 6: 190201.
6. Baek, JS, Bae, EJ, Ko, JS, et al. Late hepatic complications after Fontan operation; non-invasive markers of hepatic fibrosis and risk factors. Heart 2010; 96: 17501755.
7. Gentles, TL, Gauvreau, K, Mayer, JE Jr., et al. Functional outcome after the Fontan operation: factors influencing late morbidity. J Thorac Cardiovasc Surg 1997; 114: 392403; discussion 404–395.
8. Beghetti, M. Fontan and the pulmonary circulation: a potential role for new pulmonary hypertension therapies. Heart 2012; 96: 911916.
9. Goldberg, DJ, Shaddy, RE, Ravishankar, C, et al. The failing Fontan: etiology, diagnosis and management. Expert Rev Cardiovasc Ther 2011; 9: 785793.
10. Reinhardt, Z, Uzun, O, Bhole, V, et al. Sildenafil in the management of the failing Fontan circulation. Cardiol Young 2010; 20: 522525.
11. Uzun, O, Wong, JK, Bhole, V, et al. Resolution of protein-losing enteropathy and normalization of mesenteric Doppler flow with sildenafil after Fontan. Ann Thorac Surg 2006; 82: e39e40.
12. Walker, DK, Ackland, MJ, James, GC, et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 1999; 29: 297310.
13. Muirhead, GJ, Wilner, K, Colburn, W, et al. The effects of age and renal and hepatic impairment on the pharmacokinetics of sildenafil. Br J Clin Pharmacol 2002; 53 (Suppl 1): 21S30S.
14. Medical, Statistical, and Clinical Pharmacology Reviews of Pediatric Studies Conducted under Section 505A and 505B of the Federal Food, Drug, and Cosmetic Act, as amended by the FDA Amendments Act of 2012 (FDASIA). Retrieved August 3, 2014, from http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm316937.htm
15. Barst, RJ, Ivy, DD, Gaitan, G, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation 2011; 125: 324334.
16. Hill, KD TR, Barker, P, Fleming, GA, et al. Sildenafil exposure and hemodynamic effect after stage II single ventricle surgery. Pediatr Crit Care Med 2014; 15: 2834.
17. Hill, KD, Tunks, RD, Barker, PC, et al. Sildenafil exposure and hemodynamic effect after stage II single-ventricle surgery. Pediatr Crit Care Med 2013; 14: 593600.
18. Mukherjee, A, Dombi, T, Wittke, B, et al. Population pharmacokinetics of sildenafil in term neonates: evidence of rapid maturation of metabolic clearance in the early postnatal period. Clin Pharmacol Ther 2009; 85: 5663.
19. Muirhead, GJ, Rance, DJ, Walker, DK, et al. Comparative human pharmacokinetics and metabolism of single-dose oral and intravenous sildenafil. Br J Clin Pharmacol 2002; 53 (Suppl 1): 13S20S.
20. Vachiery, JL, Huez, S, Gillies, H, et al. Safety, tolerability and pharmacokinetics of an intravenous bolus of sildenafil in patients with pulmonary arterial hypertension. Br J Clin Pharmacol 2011; 71: 289292.
21. Nichols, DJ, Muirhead, GJ, Harness, JA. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: absolute bioavailability, food effects and dose proportionality. Br J Clin Pharmacol 2002; 53 (Suppl 1): 5S12S.
23. Marsot, A, Boulamery, A, Bruguerolle, B, et al. Population pharmacokinetic analysis during the first 2 years of life: an overview. Clin Pharmacokinet 2012; 51: 787798.
24. Laughon, MM, Benjamin, DK Jr., Capparelli, EV, et al. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol 2011; 4: 643652.
25. Ku, LC, Smith, PB. Dosing in neonates: special considerations in physiology and trial design. Pediat Res 2015; 77(1-1): 29.
26. Valitalo, P, Ranta, VP, Hooker, AC, et al. Population pharmacometrics in support of analgesics studies. Acta Anaesthesiol Scand 2014; 58: 143156.
27. Goldberg, DJ, French, B, McBride, MG, et al. Impact of oral sildenafil on exercise performance in children and young adults after the fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation 2011; 123: 11851193.
28. Giardini, A, Balducci, A, Specchia, S, et al. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur Heart J 2008; 29: 16811687.
29. Food and Drug Administration Drug Safety Communication. Retrieved December 9, 2013, from http://www.fda.gov/Drugs/DrugSafety/ucm317123.htm
30. European Medicines Agency Science Medicines Health Assessment report for Revatio. Retrieved January 20, 2014, from http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000638/WC500107804.pdf
31. US Department of Health and Human Services, Food and Drug Administration. Guidance for industry. population pharmacokinetics. Retrieved August 3, 2014, from http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM133184.pdf.
32. Guideline on the role of pharmacokinetics in the development of medicinal products in the paediatric population (2006). Retrieved October 1, 2014, from http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003066.pdf
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed