Skip to main content Accesibility Help
×
×
Home

Task shifting to clinical officer-led echocardiography screening for detecting rheumatic heart disease in Malawi, Africa

  • Amy Sims Sanyahumbi (a1), Craig A. Sable (a2), Melissa Karlsten (a1), Mina C. Hosseinipour (a3), Peter N. Kazembe (a4), Charles G. Minard (a5) and Daniel J. Penny (a1)...
Abstract
Background

Echocardiographic screening for rheumatic heart disease in asymptomatic children may result in early diagnosis and prevent progression. Physician-led screening is not feasible in Malawi. Task shifting to mid-level providers such as clinical officers may enable more widespread screening.

Hypothesis

With short-course training, clinical officers can accurately screen for rheumatic heart disease using focussed echocardiography.

Methods

A total of eight clinical officers completed three half-days of didactics and 2 days of hands-on echocardiography training. Clinical officers were evaluated by performing screening echocardiograms on 20 children with known rheumatic heart disease status. They indicated whether children should be referred for follow-up. Referral was indicated if mitral regurgitation measured more than 1.5 cm or there was any measurable aortic regurgitation. The κ statistic was calculated to measure referral agreement with a paediatric cardiologist. Sensitivity and specificity were estimated using a generalised linear mixed model, and were calculated on the basis of World Heart Federation diagnostic criteria.

Results

The mean κ statistic comparing clinical officer referrals with the paediatric cardiologist was 0.72 (95% confidence interval: 0.62, 0.82). The κ value ranged from a minimum of 0.57 to a maximum of 0.90. For rheumatic heart disease diagnosis, sensitivity was 0.91 (95% confidence interval: 0.86, 0.95) and specificity was 0.65 (95% confidence interval: 0.57, 0.72).

Conclusion

There was substantial agreement between clinical officers and paediatric cardiologists on whether to refer. Clinical officers had a high sensitivity in detecting rheumatic heart disease. With short-course training, clinical officer-led echo screening for rheumatic heart disease is a viable alternative to physician-led screening in resource-limited settings.

Copyright
Corresponding author
Correspondence to: A. S. Sanyahumbi, MD, Department of Cardiology, Baylor College of Medicine, Texas Children’s Hospital, 6621 Fannin St, Houston, TX 77030, United States of America. Tel: 832 826 5600; E-mail: aesims@bcm.edu
References
Hide All
1. Marijon, E, Mirabel, M, Celermajer, DS, Jouven, X. Rheumatic heart disease. Lancet 2012; 379: 953964.
2. Sims Sanyahumbi, A, Colquhoun, S, Wyber, R, Carapetis, J. Global disease burden of group A streptococcus. In: Ferretti JJ, Stevens DL, Fischetti VA (eds). Streptococcus Pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK, 2016.
3. Mortality, GBD, Causes of Death C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117171.
4. Remenyi, B, Wilson, N, Steer, A, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease – an evidence-based guideline. Nat Rev Cardiol 2012; 9: 297309.
5. Carapetis, JR, Steer, AC, Mulholland, EK, Weber, M. The global burden of group A streptococcal diseases. The Lancet infectious diseases 2005; 5: 685694.
6. Zachariah, JP, Samnaliev, M. Echo-based screening of rheumatic heart disease in children: a cost-effectiveness Markov model. Journal of medical economics 2015; 18: 410419.
7. Rheumatic fever and rheumatic heart disease. World Health Organization Technical Report Series. 2004; 923: 1–122. PubMed PMID: 15382606.
8. Some, D, Edwards, JK, Reid, T, et al. Task shifting the management of non-communicable diseases to nurses in Kibera, Kenya: does it work? PLoS One 2016; 11: e0145634.
9. World Health Organization. Treat Train Retrain. Task Shifting: Global Recommendations and Guidelines. WHO, Geneva, Switzerland, 2007.
10. World Health Organization. The World Health Report 2006 Working Together for Health. World Health Organization, Geneva, Switzerland.
11. World Bank Data Indicators: 2014 GNI per capita 2014. Retrieved March 24, 2016, from http://dataworldbankorg/indicator/NYGNPPCAPCD
12. World Health Organization: Global Health Observatory Data Repository. Retrieved March 24, 2016, from http://apps.who.int/gho/data/node.main.A1444
13. Pelajo, CF, Lopez-Benitez, JM, Torres, JM, de Oliveira, SK. Adherence to secondary prophylaxis and disease recurrence in 536 Brazilian children with rheumatic fever. Pediatr Rheumatol Online J 2010; 8: 22.
14. Karthikeyan, G, Zuhlke, L, Engel, M, et al. Rationale and design of a Global Rheumatic Heart Disease Registry: the REMEDY study. Am Heart J 2012; 163: 535540 e1.
15. Sims Sanyahumbi, A, Sable, C, Beaton, A, Chimalizeni, Y, et al. School and community screening shows Malawi, Africa, to have a high prevalence of latent rheumatic heart disease. Congenit Heart Dis. 2016. Epub 2016 Mar 31.
16. Soliman, EZ, Juma, H. Cardiac disease patterns in northern Malawi: epidemiologic transition perspective. J Epidemiol 2008; 18: 204208.
17. Kennedy, N, Miller, P. The spectrum of paediatric cardiac disease presenting to an outpatient clinic in Malawi. BMC Res Notes 2013; 6: 53.
18. Beaton, A, Nascimento, BR, Diamantino, AC, et al. Efficacy of a standardized computer-based training curriculum to teach echocardiographic identification of rheumatic heart disease to nonexpert users. Am J Cardiol. 2016. PubMed PMID: 27084054.
19. Colquhoun, SM, Carapetis, JR, Kado, JH, et al. Pilot study of nurse-led rheumatic heart disease echocardiography screening in Fiji – a novel approach in a resource-poor setting. Cardiol Young 2013; 23: 546552.
20. Zeger, S, Liang, KY. Longitudinal data analysis for discrete adn continuous outcomes. Biometrics 1986; 42: 121130.
21. Lu, JC, Sable, C, Ensing, GJ, et al. Simplified rheumatic heart disease screening criteria for handheld echocardiography. J Am Soc Echocardiogr 2015; 28: 463469.
22. Marijon, E, Ou, P, Celermajer, DS, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med 2007; 357: 470476.
23. Marijon, E, Ou, P, Celermajer, DS, et al. Echocardiographic screening for rheumatic heart disease. Bull World Health Organ 2008; 86: 84.
24. Remenyi, B, Carapetis, J, Wyber, R, Taubert, K, Mayosi, BM. Position statement of the World Heart Federation on the prevention and control of rheumatic heart disease. Nat Rev Cardiol 2013; 10: 284292.
25. Engelman, D, Kado, JH, Remenyi, B, et al. Screening for rheumatic heart disease: quality and agreement of focused cardiac ultrasound by briefly trained health workers. BMC Cardiovasc Disord 2016; 16: 30.
26. Saxena, A, Ramakrishnan, S, Roy, A, et al. Prevalence and outcome of subclinical rheumatic heart disease in India: the RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. Heart 2011; 97: 20182022.
27. Reeves, BM, Kado, J, Brook, M. High prevalence of rheumatic heart disease in Fiji detected by echocardiography screening. J Paediatr Child Health 2011; 47: 473478.
28. Engelman, D, Kado, JH, Remenyi, B, et al. Teaching focused echocardiography for rheumatic heart disease screening. Ann Pediatr Cardiol 2015; 8: 118121.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed