Skip to main content

Thoracic sequels after thoracotomies in children with congenital cardiac disease

  • Serpil Bal (a1), Huda Elshershari (a2), Reyhan Çeliker (a1) and Alpay Çeliker (a2)

The standard surgical approach for closed heart procedures in small infants and children is to use a posterolateral thoracotomy incision, which results in the division of the latissimus dorsi and serratus anterior muscles. The aim of our study was to determine the frequency and type of musculoskeletal deformities in children undergoing surgery with this approach for congenital cardiac disease.

We included 49 children, 28 boys and 21 girls, in the study. Their mean age was 10.2 ± 4.8 years, the mean age at the time of surgery was 3.8 ± 4.0 years, and they were evaluated at an average of 6 years after the thoracotomy. Of the patients, 94% had various musculoskeletal deformities. Scoliosis was observed in 15 patients (31%) but only in two patients did the curves exceed 25 degrees. Of these patients, three-fifths had aortic coarctation. Elevation of the shoulder was seen in 61%, winged scapula in 77%; while 14% had asymmetry of the thoracic wall due to the atrophy of the serratus anterior muscle. Deformity of the thoracic cage was observed in 18%; and 63% had asymmetry of the nipples.

Thus, we found that musculoskeletal deformities are frequent after thoracotomies in children with congenital cardiac disease. Patients who have undergone such procedures for cardiac or noncardiac surgery should be followed until their skeletal maturation is complete. Techniques sparing the serratus anterior and latissimus dorsi muscles should be preferred. These adverse effects of thoracotomy may be another reason for using interventional procedures in these cases.

Corresponding author
Correspondence to: Prof. Alpay Çeliker MD, Hacettepe University, School of Medicine, Department of Pediatrics, Division of Pediatric Cardiology, 06100 Ankara, Turkey. Tel: 90 312 3104258; Fax: 90 312 3090220; E-mail:
Hide All


Van Biezen FC, Bakx PA, De Villeneuve VH, Hop WC. Scoliosis in children after thoracotomy for aortic coarctation. Bone Joint Surg Am 1993; 75: 514518.
Jordan CE, White RI Jr, Fischer KC, Neill C, Dorst JP. The scoliosis of congenital heart disease. Am Heart J 1972; 84: 463469.
Luke MJ, McDonnell EJ. Congenital heart disease and scoliosis. J Pediatr 1968; 73: 725733.
Shelton JE, Julian R, Walburgh E, Schneider E. Functional scoliosis as a long–term complication of surgical ligation for patent ductus arteriosus in premature infants. J Pediatr Surg 1986; 21: 855857.
White RI Jr, Jordan CE, Fischer KC, Lampton L, Neil CA, Dorst JP. Skeletal changes associated with adolescent congenital heart disease. Am J Roentgenol Radium Ther Nucl Med 1972; 116: 531538.
Reckles LN, Peterson HA, Weidman WH, Bianco AJ Jr. The association of scoliosis and congenital heart defects. J Bone Joint Surg Am 1975; 57: 449455.
Jaureguizar E, Vazquez J, Murcia J, Diez Pardo JA. Morbid musculoskeletal sequelae of thoracotomy for tracheoesophageal fistula. J Pediatr Surg 1985; 20: 511514.
Roth A, Rosenthal A, Hall JE, Mizel M. Scoliosis and congenital heart disease. Clin Orthop 1973; 93: 95102.
Wright WD, Niebauer JJ. Congenital heart disease and scoliosis. J Bone Joint Surg Am 1956; 38: 11311136.
Weinstein SL. Adolescent idiopathic scoliosis – prevalence and natural history. In: Weinstein SL (ed.). The Pediatric Spine-Principles and Practice. Raven Press, New York, 1994, pp 463478.
Kawakami N, Mimatsu K, Deguchi M, Kato F, Maki S. Scoliosis and congenital heart disease. Spine 1995; 20: 12521256.
Durning RP, Scoles PV, Fox OD. Scoliosis after thoracotomy in tracheoesophageal fistula patients. A follow-up study. J Bone Joint Surg Am 1980; 62: 11561159.
El Shafie M, Rickham PP. Long-term results after primary repair of esophageal atresia and tracheoesophageal fistula. Z Kinderchir 1971; 9: 309316.
Freeman NV, Walkden J. Previously unreported shoulder deformity following right lateral thoracotomy for esophageal atresia. J Pediatr Surg 1969; 4: 627636.
Alley RD. Thoracic surgical incisions and postoperative drainage. In: Cooper P (ed.). The Craft of Surgery, Vol I. Churchill Livingstone, London, 1964, pp 415417.
Wiater JM, Flatow EL. Long thoracic nerve injury. Clin Orthop 1999; 368: 1727.
Martin JT. Postoperative isolated dysfunction of the long thoracic nerve: a rare entity of uncertain etiology. Anesth Analg 1989; 69: 614619.
Duralde XA. Evaluation and treatment of the winged scapula. J South Orthop Assoc 1995; 4: 3852.
Seghaye M-C, Grabitz RG, Alzen G, et al. Thoracic sequelea after surgical closure of the patent ductus arteriosus in premature infants. Acta Paediatr 1997; 86: 213216.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Cardiology in the Young
  • ISSN: 1047-9511
  • EISSN: 1467-1107
  • URL: /core/journals/cardiology-in-the-young
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed