Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T19:19:17.972Z Has data issue: false hasContentIssue false

Characterization of Portuguese gypsums as raw materials for dermocosmetics

Published online by Cambridge University Press:  31 July 2019

Cristiana Costa
Affiliation:
Aveiro University, GeoBioTec Research Centre, Geosciences Department, 3810-193 Aveiro, Portugal
António Fortes
Affiliation:
Rovuma University, Department of Earth Sciences, Nampula, Mozambique
Fernando Rocha*
Affiliation:
Aveiro University, GeoBioTec Research Centre, Geosciences Department, 3810-193 Aveiro, Portugal
Angela Cerqueira
Affiliation:
Aveiro University, GeoBioTec Research Centre, Geosciences Department, 3810-193 Aveiro, Portugal
Delfim Santos
Affiliation:
Porto University, Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, 4050-313 Porto, Portugal
Maria Helena Amaral
Affiliation:
Porto University, Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, 4050-313 Porto, Portugal

Abstract

Portuguese gypsum deposits utilized by the cement industry were characterized mineralogically, chemically and technologically for possible application in dermocosmetics. The deposits studied (Loulé, Óbidos and Soure) correspond to small outcrops in diapiric anticline areas. In principle, they represent gypsites which are white, and generally of higher quality for traditional applications (e.g. white cement), or greyish, and generally not adequate for cements and mortars. The analytical methods used to characterize the materials were wet sieving and X-ray sedimentation, X-ray diffraction, X-ray fluorescence spectrometry and assessment of abrasiveness, plasticity, texturometrics (adhesivity and firmness), oil absorption and cooling rate. The Óbidos gypsum displayed greater mineralogical and chemical quality (almost pure calcium sulfate) and had a finer grain size (<63 μm), whereas Loulé and Soure gypsums contain mineralogical impurities (mainly quartz). The Óbidos gypsum shows good characteristics in general for application in dermocosmetics because of its absorption, plasticity, adhesivity, firmness and low abrasiveness.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Asuman Turkmenoglu

References

Aguzzi, C., Cerezo, P., Viseras, C. & Caramella, C. (2007) Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36, 2236.Google Scholar
Baltar, C., Bastos, F. & Luz, A. (2005) Gipsita. Pp. 449470 in: Rochas e Minerais Industriais (da Luz, A.B. & Lins, F.F., editors). Centro de Tecnologia Mineral Ministério da Ciência e Tecnologia, Rio de Janeiro, Brazil.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London, UK.Google Scholar
El Kanouni, M.A., Aazzab, B., Tricha, L., Samdi, A., Moussa, R., Hamel, J. & Gomina, M. (2005) Elaboration and characterization of dental plasters obtained from a Moroccan gypsum. Journal of Physics IV, 123, 245249.Google Scholar
Galhano, C., Rocha, F. & Gomes, C. (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behavior of the ‘Clays Aveiro’ formation (Portugal). Clay Minerals, 34, 109116.Google Scholar
Gomes, C. & Silva, J. (2007) Minerals and clay minerals in medical geology. Applied Clay Science, 36, 421.Google Scholar
Harben, P.W. (2002) Industrial minerals market profiles. Pp. 154159 in: The Industrial Minerals Handbook: A Guide to Markets, Specifications and Prices (Taylor, L., editor). Pensord, Blackwood, UK.Google Scholar
Karakaya, M.C., Karakaya, N., Sarıoğlan, S. & Koral, M. (2010) Some properties of thermal muds of some spas in Turkey. Applied Clay Science, 48, 531537.Google Scholar
Karakaya, M.C., Karakaya, N. & Aydin, S. (2017) The physical and physicochemical properties of some Turkish thermal muds and pure clay minerals and their uses in therapy. Turkish Journal of Earth Sciences, 26, 395409.Google Scholar
Legido, J.L., Medina, C., Mourelle, M.L., Carretero, M.I. & Pozo, M. (2007) Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use inpelotherapy. Applied Clay Science, 36, 148160.Google Scholar
Lopez-Galindo, A., Viseras, C. & Cerezo, P. (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163.Google Scholar
Moura, A., Velho, J.L. & Alves, W. (2015) Estudo preliminar do depósito de paligorsquite de Figueiró do Campo (Soure, Portugal). Cadernos Laboratorio Xeolóxico de Laxe, 38, 93106.Google Scholar
Olejnik, R. (1999) Modern applications of gypsum products. ZKG International, 52, 649653.Google Scholar
Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O. & Gomes, C. (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Progress in Oceanography, 52, 233247.Google Scholar
Olson, D.W. (2002) Gypsum. Pp. 110 in: US Geological Survey Minerals Yearbook. US Geological Survey, Reston, VA, USA.Google Scholar
Pena-Ferreira, M.R., Santos, D., Silva, J.B., Amaral, M.H., Sousa-Lobo, J.M., Gomes, J.H. & Gomes, C. (2011) Desenvolvimento de formulações contendo argila esmectítica e areia carbonatada biogénica da ilha Porto Santo para aplicação em máscaras de limpeza e branqueadoras. Anales de Hidrología Médica, 4, 5766.Google Scholar
Quintela, A., Terroso, D., Almeida, S.F.P., Reis, P., Moura, A., Correia, A., Ferreira, S.E., Forjaz, V. & Rocha, F. (2010) Geochemical and microbiological characterization of some Azorean volcanic muds after maturation. Research Journal of Chemistry and Environment, 14, 6674.Google Scholar
Quintela, A., Costa, C., Terroso, D. & Rocha, F. (2014) Abrasiveness Index of dispersions of Portuguese clays using the Einlehner method: influence of clay parameters. Clay Minerals, 49, 2734.Google Scholar
Quintela, A., Costa, C., Terroso, D., , H., Nunes, J.C. & Rocha, F. (2015) Characterization and evaluation of hydrothermally influenced clayey sediments from Caldeiras da Ribeira Grande fumarolic field (Azores Archipelago, Portugal) used for aesthetic and pelotherapy purposes. Environmental Earth Sciences, 73, 28332842.Google Scholar
Rebelo, M., Viseras, C., Galindo, A.L., Rocha, F. & Silva, E.F. (2011a) Characterization of Portuguese geological materials to be used in medical hydrology. Applied Clay Science, 51, 258266.Google Scholar
Rebelo, M., Viseras, C., Galindo, A.L., Rocha, F. & Silva, E.F. (2011b) Rheological and thermal characterization of peloids made of selected Portuguese Geological materials. Applied Clay Science, 52, 219227.Google Scholar
Rowe, R., Sheskey, P.J. & Quinn, M.E. (editors) (2009) Handbook of Pharmaceutical Excipients, 6th edition. Pharmaceutical Press, London, UK.Google Scholar
Schaefer, C.O. (2013) Valorização de fonte alternativa de sulfato de cálcio para a produção de argamassas autonivelantes. Ed. Universidade Federal de Santa Catarina, Brazil. Available at: https://repositorio.ufsc.br/xmlui/handle/123456789/123140.Google Scholar
Schleier, R., Galitesi, C.R. & Ferreira, E. (2014) Silício e cálcio – uma abordagem antroposófica (Silicon and calcium – an anthroposophic approach). Arte Médica Ampliada, 34, 102113.Google Scholar
Scott, F. (2011) GR4CM: Gypsum Recycling for Cement Manufacture. Waste Minimisation Fund Feasibility Study. Available at: http://www.tnc.co.nz/files/gr4cm_ms2_report_031111.pdf.Google Scholar
Thomas, M.V. & Puleo, D.A. (2009) Calcium sulfate: properties and clinical applications. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88B, 597610.Google Scholar
Velho, J. & Campos, C. (2006) Geologia do depósito de gesso de S. José do Pinheiro (Soure). Pp. 10711074 in: Proc. VII Congresso Nacional de Geologia, Évora. Available at: https://www.socgeol.org/documents/geologia-do-deposito-de-gesso-de-s-jose-do-pinheiro-soure.Google Scholar
Viseras, C., Aguzzi, C., Cerezo, P. & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 3750.Google Scholar