Skip to main content
×
×
Home

Low-frequency electrical conductivity of aqueous kaolinite suspensions: surface conductance, electrokinetic potentials and counterion mobility

  • Christian Weber (a1) and Helge Stanjek (a1)
Abstract

The low-frequency conductivity of aqueous kaolinite suspensions has been measured as a function of volume fraction and concentration of KCl, K2SO4 and BaCl2, respectively. These measurements were interpreted with a theoretical model accounting for surface conductivity and particle shape. For the first time, an internally consistent data set was established by measuring all parameters necessary to solve the relevant equations. The simultaneous availability of surface conductivity, surface charge density and diffuse layer charge density permitted the estimation of counterion mobilities in the stagnant layer and a consistency check for the evaluation procedure of the conductivity experiments. In agreement with current literature results, monovalent counterions were found to have a Stern layer mobility similar to their bulk mobility, whereas the mobility of divalent counterions in this layer is reduced by a factor of ∼2.

Copyright
Corresponding author
*E-mail: chris.weber@chemie.tu-freiberg.de
Footnotes
Hide All

Present address: Institut für Physikalische Chemie, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany

Footnotes
References
Hide All
Amirianshoja, T., Junin, R., Idris, A.K. & Rahmani, O. (2013) A comparative study of surfactant adsorption by clay minerals. Journal of Petroleum Science and Engineering, 101, 2127.
Arroyo, F.J., Carrique, F., Jiménez-Olivares, M.L. & Delgado, A.V. (2000) Rheological and electrokinetic properties of sodium montmorillonite suspensions. II Low-frequency dielectric dispersion. Journal of Colloid and Interface Science, 229, 118122.
Arulanandan, K. & Mitchell, J.K. (1968) Low frequency dielectric dispersion of clay-water-electrolyte systems. Clays and Clay Minerals, 16, 337351.
Bergaya, F., Lagaly, G. & Vayer, M. (2006) Cation and anion exchange. Pp. 9791001 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.
Bersillon, J.-L., Villieras, F., Michot, L. & Cases, J.-M. (2003) A new way of assessing clay cation adsorption using normalized salt concentration. Clay Minerals, 38, 233242.
Bikerman, J.J. (1935) Die Oberflächenleitfähigkeit und ihre Bedeutung. Kolloid Zeitschrift, 72, 100108.
Bolland, M.D.A., Posner, A.M. & Quirk, J.P. (1976) Surface charge on kaolinites in aqueous suspension. Australian Journal of Soil Research, 14, 197216.
Brindley, G. & Robinson, K. (1946) The structure of kaolinite. Mineralogical Magazine, 27, 242253.
Chassagne, C. & Bedeaux, D. (2008) The dielectric response of a colloidal spheroid. Journal of Colloid and Interface Science, 326, 240253.
Chassagne, C., Mietta, F. & Winterwerp, J.C. (2009) Electrokinetic study of kaolinite suspensions. Journal of Colloid and Interface Science, 336, 352359.
Chhih, A., Turq, P., Bernard, O., Barthel, J.M.G. & Blum, L. (1994) Transport coefficients and apparent charges of concentrated electrolyte solutions – Equations for practical use. Berichte der Bunsengesellschaft für Physikalische Chemie, 98, 15161525.
Choo, H., Song, J., Lee, W. & Lee, C. (2016) Effects of clay fraction and pore water conductivity on electrical conductivity of sand-kaolinite mixed soils. Journal of Petroleum Science and Engineering, 147, 735745.
Delgado, A.V., Gonzalez-Caballero, F., Hunter, R., Koopal, L.K. & Lyklema, J. (2007) Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 209, 194224.
Dixon, J.B. (1989) Kaolin and serpentine group minerals. Pp. 467525 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S., editors). Soil Science Society of America, Madison, Wisconsin, USA.
Dukhin, S.S. & Shilov, V.N. (1980) Kinetic aspects of elctrochemistry of disperse systems. Part II. Induced dipole moment and the non-equilibrium double layer of a colloid particle. Advances in Colloid and Interface Science, 13, 153195.
Ferris, A.P. & Jepson, W.B. (1975) The exchange capacities of kaolinite and the preparation of homoionic clays. Journal of Colloid and Interface Science, 51, 245259.
Goldenberg, L.C., Hutcheon, I., Wardlaw, N. & Melloul, A.J. (1993) Rearrangement of fine particles in porous media causing reduction of permeability and formation of preferred pathways of flow: Experimental findings and a conceptual model. Transport in Porous Media, 13, 221237.
Grosse, C. (2009) Generalization of a classic thin double layer polarization theory of colloidal suspensions to electrolyte solutions with different ion valences. Journal of Physical Chemistry B, 113, 89118924.
Haynes, W.M., Lide, D.R. & Bruno, T.J., editors (2012) Handbook of Chemistry and Physics. 93rd edition , CRC Press, Boca Raton, Florida, USA.
Hunter, R. (1981) Zeta potential in colloid science – principles and applications. Pp. 1386 in: Colloid Science: A Series of Monographs (Ottewill, R.H. & Rowell, R.L., editors). Academic Press, London.
Hunter, R. & Alexander, A.E. (1963a) Surface properties and flow behavior of kaolinite Part I: Electrophoretic mobility and stability of kaolinite sols. Journal of Colloid Science, 18, 820832.
Hunter, R. & Alexander, A.E. (1963b) Surface properties and flow behavior of kaolinite Part II: Electrophoretic studies of anion adsorption. Journal of Colloid Science, 18, 833845.
Ishida, T., Makino, T. & Wang, C. (2000) Dielectric-relaxation spectroscopy of kaolinite, montmorillonite, allophane and imogolite under moist conditions. Clays and Clay Minerals, 48, 7584.
Jennings, B.R. & Parslow, K. (1988) Particle size measurement: The equivalent spherical diameter. Proceedings of the Royal Society of London A: Physical, Mathematical and Engineering Sciences, 419, 137149.
Jenny, H. (1932) Studies on the mechanism of ionic exchange in colloidal aluminum silicates. The Journal of Physical Chemistry, 36, 22172258.
Jenny, H. (1936) Simple kinetic theory of ionic exchange. I Ions of equal valency. Journal of Physical Chemistry, 40, 501517.
Jiménez, M.L. & Bellini, T. (2010) The electrokinetic behavior of charged non-spherical colloids. Current Opinion in Colloid and Interface Science, 15, 131144.
Jiménez, M.L., Arroyo, F.J., Carrique, F., Kaatze, U. & Delgado, A.V. (2005) Determination of stagnant layer conductivity in polystyrene suspensions: temperature effects. Journal of Colloid and Interface Science, 281, 503509.
Löbbus, M., van Leeuwen, H.P. & Lyklema, J. (2000) Streaming potentials and conductivities of latex plugs. Influence of the valency of the counterion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161, 103113.
Lockhart, N.C. (1980) Electrical properties and the surface characteristics and structure of clays II. Kaolinite – a non-swelling clay. Journal of Colloid and Interface Science, 74, 520529.
Lorenz, P.B. (1969) Surface conductance and electrokinetic properties of kaolinite beds. Clays and Clay Minerals, 17, 223231.
Lyklema, J. (1991) Transport phenomena in interface and colloid science. Pp. 6.16.97 in: Fundamentals of Interface and Colloid Science (Lyklema, J., editor). Academic Press, San Diego, California, USA.
Lyklema, J. (1995) Electric double layers. Pp. 3.13.232 in: Fundamentals of Interface and Colloid Science (Lyklema, J., editor). Academic Press, San Diego, California, USA.
Lyklema, J. (2001) Surface conduction. Journal of Physics: Condensed Matter, 13, 50275034.
Lyklema, J. (2002) Specificity in the statics and dynamics of surface-confined ions. Molecular Physics, 100, 31773185.
Lyklema, J. (2003) Lyotropic sequences in colloid stability revisited. Advances in Colloid and Interface Science, 100–102, 112.
Lyklema, J. (2011) Surface charges and electrokinetic charges: Distinctions and juxtapositionings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 376, 28.
Lyklema, J. & Minor, M. (1998) On surface conduction and its role in electrokinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140, 3341.
Ma, C. & Eggleton, R.A. (1999) Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47, 174180.
Minor, M., van Leeuwen, H.P. & Lyklema, J. (1998a) Low-frequency dielectric response of polystyrene latex dispersions. Journal of Colloid and Interface Science, 206, 397406.
Minor, M., van der Linde, A.J. & Lyklema, J. (1998b) Streaming potentials and conductivities of latex plugs in indifferent electrolytes. Journal of Colloid and Interface Science, 203, 177188.
O'Brien, R.W. & Rowlands, W.N. (1993) Measuring the surface conductance of kaolinite particles. Journal of Colloid and Interface Science, 159, 471476.
O'Brien, R.W. & Ward, D.N. (1988) The electrophoresis of a spheroid with a thin double layer. Journal of Colloid and Interface Science, 121, 402413.
Rasmusson, M., Rowlands, W.N., O'Brien, R.W. & Hunter, R. (1997) The dynamic mobility and dielectric response of sodium bentonite. Journal of Colloid and Interface Science, 189, 92100.
Revil, A. (2012) Spectral induced polarization of shaly sands: Influence of the electrical double layer. Water Resources Research, 48, 123.
Revil, A. (2014) Comment on: On the relationship between induced polarization and surface conductivity: Implications for petrophysical interpretation of electrical measurements. Geophysics, 79, X1X10.
Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W. & Unger, K.K. (1994) Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 66, 17391758.
Rowlands, W.N. & O'Brien, R.W. (1995) The dynamic mobility and dielectric response of kaolinite particles. Journal of Colloid and Interface Science, 175, 190200.
Schofield, R.K. & Samson, H.R. (1954) Flocculation of kaolinite due to attraction of oppositely charged crystal faces. Discussions of the Faraday Society, 18, 135154.
Stanjek, H. & Künkel, D. (2016) CEC determination with Cu-triethylenetetramine: recommendations for improving reproducibility and accuracy. Clay Minerals, 51, 118.
Swartzen-Allen, S.L. & Matijević, E. (1974) Surface and colloid chemistry of clays. Chemical Reviews, 74, 385400.
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinso, F., Rouquerol, J. & Sing, S.W. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 10511069.
Vasconcelos, I.F., Bunker, B.A. & Cygan, R.T. (2007) Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite. Journal of Physical Chemistry C, 111, 67536762.
Weber, C. & Stanjek, H. (2012) Development of diffuse double layers in column-wicking experiments: Implications for pH-dependent contact angles on quartz. Journal of Colloid and Interface Science, 387, 270274.
Weber, C., Heuser, M., Mertens, G. & Stanjek, H. (2014) Determination of clay mineral aspect ratios from conductometric titrations. Clay Minerals, 49, 1726.
Weiss, A. (1959) Über das Kationenaustauschvermögen der Tonminerale. III Der Kationenaustausch bei Kaolinit. Zeitschrift für anorganische und allgemeine Chemie, 299, 92120.
Weller, A., Slater, L. & Nordsiek, S. (2013) On the relationship between induced polarization and surface conductivity: Implications for petrophysical interpretation of electrical measurements. Geophysics, 78, D315D325.
White, L.R. (1982) Capillary rise in powders. Journal of Colloid and Interface Science, 90, 536538.
Zhou, Z. & Gunter, W. (1992) The nature of the surface charge of kaolinite. Clays and Clay Minerals, 40, 365368.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Clay Minerals
  • ISSN: 0009-8558
  • EISSN: 1471-8030
  • URL: /core/journals/clay-minerals
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 15th August 2018. This data will be updated every 24 hours.