Skip to main content Accessibility help
×
×
Home

Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites

  • C. Mosser (a1), M. Mestdagh (a2), A. D'Ecarreau (a3) and A. J. Herbillon (a4)
Abstract

ESR has been used to obtain information on the octahedral or interlamellar position of Cu(II) in natural smectites from Burkina Faso (West Africa). On the basis of 060 XRD reflections and chemical data, these smectites were found to be Al-rich and dioctahedral. After both Mehra & Jackson, and De Endredy deferrification treatments, the Cu contents remained high (4500 and 22000 p.p.m., respectively). The Cu(II) ESR spectra of these deferrated smectites were compared to those of two reference smectites for which the structural position of Cu(II) was precisely known. The interlayer Cu(II) signal was obtained on a Cu-saturated Camp Berteau montmorillonite, while the octahedral Cu(II) signal was obtained on a synthetic Cu-rich smectite. For this latter reference sample, EXAFS spectroscopy provided evidence that Cu was in six-fold coordination in the octahedral sheet only, and was not exchangeable. In agreement with the experiments by Clementz, Pinnavaia and Mortland, a shift in the g⊥ ESR signal was observed when the air-dried Cu-saturated Camp Berteau montmorillonite (g⊥ = 2·05) was soaked in water for 48 h (g⊥ = 2·13). A small shift in the opposite sense was observed for the synthetic Cu smectite (g⊥ = 2·05 for the air-dried sample, g⊥ = 2·02 for the water-soaked sample). For the two natural smectites a small shift similar to that for the synthetic Cu-smectite was observed. These results indicate that up to 10% of the Cu atoms substitute for Al-Mg-Fe atoms in the octahedral sheets of the smectites studied.

Copyright
References
Hide All
Angel, B.R. Vincent, E.J. (1978) Electron spin resonance studies of iron oxides associated with the surface of kaolins. Clays Clay Miner., 26, 263–272.
Besnus, Y. Rouault, R. (1973) Méthode d'analyse des roches au spectromdtre d'arc a lecture directe par un dispositif d'électrode rotative. Analusis, 2, 111–116.
Besson, G., Decarreau, A., Manceau, A., Sanz, J., Suquet, H., (1990). Organisation interne du feuillet. In: Les Materiawc Argileux: Structures, Propriétés, Applications (A. Decarreau, editor). Soc. Fr. Mineral. Cristall. (SFMC)
Bonnin, D., Muller, S. Callas, G. (1982) Le fer dans les kaolins. Etude par spectrometries RPE, Mossbauer, EXAFS. Bull. Mineral., 105, 467–475.
Bonnin, D., Callas, G., Suquet, H. & Pezerat, H. (1985) Intracristalline distribution of Fe3 in Garfield nontronite; a spectroscopic study. Phy. Chem. Minerals, 12, 55–64.
Burns, R.G. (1970) Mineralogical Application of Crystal Field Theory.Cambridge University Press, Cambridge.
Brown, D.R. Kevan, L. (1988) Aqueous coordination and location of exchangeable Cu2+ cations in montmorillonite clay studied by electron spin resonance and electron pin-echo modulation. J. Am. Chem. Soc., 110, 2743–2748.
Chukhrov, F.V. Anossov, F.Y. (1950) Mem. Soc. Russe Min., 79, 2327.
Chukhrov, F.V., Zvyagin, B.B., Ermilova, L.P., Gorshov, A.I. Rudnitskaya, E.S. (1969) The relation between chrysocolla, medmontite and copper-halloysite. Proc. Int. Clay Conf. Tokyo, 141150.
Clementz, D.M., Pinnavaia, T.J., Mortland, M.M. (1973) Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study. J. Phys. Chem., 77, 196–200.
Clementz, D.M., Mortland, M.M. Pinnavaia, T.J. (1974) Properties of reduced charge montmorillonite: hydrated Cu(II) ion as a spectroscopic probe. Clays Clay Miner., 22, 49–57.
Creach, M. (1989) Accumulation supergçne de cuivre en milieu latéritique: étude pétrologique, cristallochimique et géochimique de Valteration du sham de Sante Blandina (Itapeva, Brésil). Thèse Doct. Univ. Poitiers, France.
Creach, M., Decarreau, A. Nahon, D., (1990) Copper distribution in silicated weathering products of Santa Blandina skarn (Itapeva, Brazil). Submitted to Clay Miner.
Decarreau, A. (1980) Cristallogenese expérimentale des smectites magnèsiennes: hectorite, stevensite. Bull. Miner., 103, 579–590.
Decarreau, A. (1981) Cristallogenèse à basse température de smectites trioctaédriques par vieillissement de coprecipites silicometalliques de formule (Si4_xAlx) Mg2+)011nH2O, où x varie de.0 à 1 et M2+ = Mg, Ni, Co, Zn, Fe, Cu, Mn. C.R.Acad. Sci. Paris,, 292, 61–64.
Decarreau, A. (1983) Etude experimentale de la cristallogenese des smectites. Mesures des coefficients de partage smectite trioctaedrique/solution aqueuse pour les metaux M2+ de la l6re serie de transition. Sci. Geol., 74, 185p.
Decarreau, A. (1985) Partitioning of divalent transition elements between octahedral sheet of trioctahedral smectites and water, Geochim. Cosmochim. Acta, 49, 1537–1544.
Decarreau, A., Colin, F., Herbillon, A., Manceau, A., Nahon, D., Paquet, H., Trauth-Badaud, D. Trescases, J.J. (1987) Domain segregation in Ni-Fe-Mg-smectites. Clays Clay Miner., 35, 1–10.
De Endredy, A.S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull. 29, 209217.
Du Plessis, S.F. & Burger, R. du T. (1971) Die spesifieke adsorpsie van koper deur kleinminerale en grondfraksies. Agrochemophysica, 3, 110.
Forbes, E.A., Posner, A.M. Quirk J,P. (1976) The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. J. Soil Sci., 27, 154–166.
Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. isomorphous substitutions and external surface properties. Clay Miner., 15, 321–335.
Herbillon, A J., Mestdagh, M.M., Vielvoye, L. Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–220.
Ildefonse, P., Manceau, A., Prost, D. & Toledo-Groke, M.C. (1986) Hydroxy-Cu-vermiculite formed by weathering of Fe-biotites at Salobo, Carajas, Brazil. Clays Clay Miner., 34, 338–345.
Jones, J.P., Angel, B.R. Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinite. Clay Miner., 10, 257–269.
McBride, M.B. (1976) Hydration structure of exchangeable Cu2+ in vermiculite and smectite. Clays Clay Miner., 24, 211–212.
McBride, M.B. (1982) Hydrolysis and dehydration reactions of exchangeable Cu2+ on hectorite. Clays Clay Miner., 30, 200–206.
McBride, M.B. Mortland, M.M. (1974) Copper(II) interactions with montmorillonites: evidence from physical methods. Soil Sci. Soc. Am. Proc., 38, 408–414.
McLaren, R.G. Crawford, D.W. (1973) Studies on soil copper. II. The specific adsorption of copper by soils. J. Soil Sci., 24, 443–452.
Manceau, A., Callas, G. Decarreau, A. (1985) Nickel-bearing clay minerals: I. Optical spectroscopy study of nickel crystal chemistry. Clay Miner., 20, 367–387.
Manceau, A. Calas, G. (1986) Nickel-bearing clay minerals: II. Intracrystalline distribution of nickel: an X-ray absorption study. Clay Miner., 21, 341–360.
Manceau, A., Bonnin, D., Kaiser, P. Fretigny, C. (1988) Polarized EXAFS spectra of biotite and chlorite. Phys. Chem. Miner., 16, 180–185.
Meads, R.E. Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313–345.
Mehra, O.P. Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.
Mestdagh, M.M., Vielvoye, L. Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner., 15, 1–13.
Mestdagh, M.M., Herbillon, A., Rodrique, L. Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinit^ des kaolinites. Bull. Mineral., 105, 457–466.
Mosser, C. Zeegers, H. (1988) The mineralogy and geochemistry of two copper-rich weathering profiles in Burkina Faso, West Africa. J. Geochem. Explor., 30, 145–166.
Olivier, D., Vedrine, J.C. Pezerat, H. (1975) Application de la resonance paramagnetique electronique a la localisation du Fe3+ dans les smectites. Bull. Groupe franc. Argiles XXVII, 153165.
Parisot, J.C. (1989) Ualteration lateritique de protores cupriferes au Bresil. These Doct. Univ. Poitiers, France.
Raoux, D., Petiau, J., Bondot, P., Calas, G., Fontaine, A., Lagardep, P., Levitz, P., Loupias, G. Sadoc, A. (1980) L'EXAFS applique aux determinations structurales de milieux desordonnes. Rev. Phys. Appl., 15, 10791094.
Samuel, J. Rouault, R. (1983) Les méthodes d'analyse des matériaux géologiques pratiqués au Laboratoire d'analyses Spectrométriques. Rep. Centre Sedim. Geochim. Surf. Strasbourg.
Samuel, J., Rouault, R. Besnus, Y. (1985) Analyse multiélémentaire standardisée des matériaux géologiques en spectrometrie d'emission par plasma à couplage inductif. Analusis, 13, 312–317.
Van Oosterwyck-Gastuche, M.C. (1970) La structure de la chrysocolle. C.R. Acad. Sc. Paris, 271, 1837–1840.
Von Jaggi, H. Oswald, H.R. (1961) Die Kristallstruktur des Kupferhydroxids, Cu(OH)2. Acta Cryst., 14, 1041–1045.
Wertz, J.E. Bolton, J.R. (1972) Electron Spin Resonance. McGraw-Hill, New York.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Clay Minerals
  • ISSN: 0009-8558
  • EISSN: 1471-8030
  • URL: /core/journals/clay-minerals
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed