Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-mpxzb Total loading time: 0.758 Render date: 2023-01-27T22:21:36.964Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Neuroimaging endophenotypes in autism spectrum disorder

Published online by Cambridge University Press:  03 August 2015

Rajneesh Mahajan*
Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland, USA Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Stewart H. Mostofsky
Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland, USA Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
*Address for correspondence, Rajneesh Mahajan, MD, Kennedy Krieger Institute, Center for Autism and Related Disorders, 3901 Greenspring Avenue, Baltimore, MD 21211, USA. (Email:


Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has a strong genetic basis, and is heterogeneous in its etiopathogenesis and clinical presentation. Neuroimaging studies, in concert with neuropathological and clinical research, have been instrumental in delineating trajectories of development in children with ASD. Structural neuroimaging has revealed ASD to be a disorder with general and regional brain enlargement, especially in the frontotemporal cortices, while functional neuroimaging studies have highlighted diminished connectivity, especially between frontal-posterior regions. The diverse and specific neuroimaging findings may represent potential neuroendophenotypes, and may offer opportunities to further understand the etiopathogenesis of ASD, predict treatment response, and lead to the development of new therapies.

Review Articles
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Ruggeri, B, Sarkans, U, Schumann, G, Persico, AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl). 2014; 231(6): 12011216.CrossRefGoogle ScholarPubMed
2. Gottesman, II, Gould, TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003; 160(4): 636645.CrossRefGoogle ScholarPubMed
3. John, B, Lewis, KR. Chromosome variability and geographic distribution in insects. Science. 1966; 152(3723): 711721.CrossRefGoogle ScholarPubMed
4. Gottesman, II, Shields, J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A. 1967; 58(1): 199205.CrossRefGoogle ScholarPubMed
5. Shields, J, Gottesman, II. Cross-national diagnosis of schizophrenia in twins. The heritability and specificity of schizophrenia. Arch Gen Psychiatry. 1972; 27(6): 725730.CrossRefGoogle ScholarPubMed
6. Cannon, TD, Keller, MC. Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol. 2006; 2: 267290.CrossRefGoogle ScholarPubMed
7. Viding, E, Blakemore, SJ. Endophenotype approach to developmental psychopathology: Implications for autism research. Behav Genet. 2007; 37(1): 5160.CrossRefGoogle ScholarPubMed
8. Skuse, DH. Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends Genet. 2007; 23(8): 387395.CrossRefGoogle ScholarPubMed
9. DiCicco-Bloom, E, Lord, C, Zwaigenbaum, L, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006; 26(26): 68976906.CrossRefGoogle ScholarPubMed
10. Kanner, L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968; 35(4): 100136.Google ScholarPubMed
11. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Morb Mortal Wkly Rep. 2014; 63(SS02): 121.Google Scholar
12. Newschaffer, CJ, Croen, LA, Daniels, J, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007; 28: 235258.CrossRefGoogle ScholarPubMed
13. DSM-5 | Accessed January 1, 2015.Google Scholar
14. Lord, C, Rutter, M, Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders. 1994; 24(5): 659685.CrossRefGoogle Scholar
15. Lord, C, Risi, S, Lambrecht, L, Cook, EH, Jr, Leventhal, BL, DiLavore, PC, Rutter, M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders. 2000; 30(3): 205223.CrossRefGoogle Scholar
16. Wing, L, Gould, J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord. 1979; 9(1): 1129.CrossRefGoogle ScholarPubMed
17. Geschwind, DH, Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007; 17(1): 103111.CrossRefGoogle ScholarPubMed
18. Freitag, CM, Staal, W, Klauck, SM, Duketis, E, Waltes, R. Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry. 2010; 19(3): 169178.CrossRefGoogle ScholarPubMed
19. Lichtenstein, P, Carlström, E, Råstam, M, Gillberg, C, Anckarsäter, H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry. 2010; 167(11): 13571363.CrossRefGoogle Scholar
20. Folstein, S, Rutter, M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry. 1977; 18(4): 297321.CrossRefGoogle ScholarPubMed
21. Folstein, S, Rutter, M. Genetic influences and infantile autism. Nature. 1977; 265(5596): 726728.CrossRefGoogle ScholarPubMed
22. Folstein, SE, Rutter, ML. Autism: familial aggregation and genetic implications. J Autism Dev Disord. 1988; 18(1): 330.CrossRefGoogle ScholarPubMed
23. Bailey, A, Le Couteur, A, Gottesman, I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995; 25(1): 6377.CrossRefGoogle ScholarPubMed
24. Bolton, P, Macdonald, H, Pickles, A, et al. A case-control family history study of autism. J Child Psychol Psychiatry. 1994; 35(5): 877900.CrossRefGoogle ScholarPubMed
25. Constantino, JN, Zhang, Y, Frazier, T, Abbacchi, AM, Law, P. Sibling recurrence and the genetic epidemiology of autism. Am J Psychiatry. 2010; 167(11): 13491356.CrossRefGoogle ScholarPubMed
26. Constantino, JN, Todorov, A, Hilton, C, et al. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013; 18(2): 137138.CrossRefGoogle ScholarPubMed
27. Sumi, S, Taniai, H, Miyachi, T, Tanemura, M. Sibling risk of pervasive developmental disorder estimated by means of an epidemiologic survey in Nagoya, Japan. J Hum Genet. 2006; 51(6): 518522.CrossRefGoogle ScholarPubMed
28. Piven, J, Palmer, P, Jacobi, D, Childress, D, Arndt, S. Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry. 1997; 154(2): 185190.Google ScholarPubMed
29. Constantino, JN, Todd, RD. Autistic traits in the general population: a twin study. Arch Gen Psychiatry. 2003; 60(5): 524530.CrossRefGoogle ScholarPubMed
30. Constantino, JN, Todd, RD. Intergenerational transmission of subthreshold autistic traits in the general population. Biol Psychiatry. 2005; 57(6): 655660.CrossRefGoogle ScholarPubMed
31. Hoekstra, RA, Bartels, M, Verweij, CJ, Boomsma, DI. Heritability of autistic traits in the general population. Arch Pediatr Adolesc Med. 2007; 161(4): 372377.CrossRefGoogle ScholarPubMed
32. Geschwind, DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011; 15(9): 409416.CrossRefGoogle ScholarPubMed
33. Schaefer, GB, Mendelsohn, NJ; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013; 15(5): 399407.CrossRefGoogle ScholarPubMed
34. Schaefer, GB, Mendelsohn, NJ; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders. Genet Med. 2008; 10(4): 301305.CrossRefGoogle ScholarPubMed
35. Miles, JH. Autism spectrum disorders—a genetics review. Genet Med. 2011; 13(4): 278294.CrossRefGoogle ScholarPubMed
36. Sebat, J, Lakshmi, B, Malhotra, D, et al. Strong associations of de novo copy number mutations with autism. Science. 2007; 316(5823): 445449.CrossRefGoogle ScholarPubMed
37. Michaelson, JJ, Shi, Y, Gujral, M, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell. 2012; 151(7): 14311442.CrossRefGoogle ScholarPubMed
38. Persico, AM, Napolioni, V. Autism genetics. Behav Brain Res. 2013; 251: 95112.CrossRefGoogle ScholarPubMed
39. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee, SH, Ripke, S, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013; 45(9): 984994.Google ScholarPubMed
40. Willsey, JA, State, MW. Autism spectrum disorders: from genes to neurobiology. Current Opinion in Neurobiology. 2015; 30: 9299.CrossRefGoogle ScholarPubMed
41. Casey, BJ, Giedd, JN, Thomas, KM. Structural and functional brain development and its relation to cognitive development. Biol Psychology. 2000; 54(1–3): 241257.CrossRefGoogle ScholarPubMed
42. Tau, GZ, Peterson, BS. Normal development of brain circuits. Neuropsychopharmacology. 2010; 35(1): 147168.CrossRefGoogle ScholarPubMed
43. Kretschmann, HJ, Kammradt, G, Krauthausen, I, Sauer, B, Wingert, F. Brain growth in man. Bibl Anat. 1986; 28: 126.Google Scholar
44. Gogtay, N, Giedd, JN, Lusk, L, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004; 101(21): 81748179.CrossRefGoogle ScholarPubMed
45. Sowell, ER, Thompson, PM, Leonard, CM, Welcome, SE, Kan, E, Toga, AW. Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci. 2004; 24(38): 82238231.CrossRefGoogle ScholarPubMed
46. Mechelli, A, Friston, KJ, Frackowiak, RS, Price, CJ. Structural covariance in the human cortex. J Neurosci. 2005; 25(36): 83038310.CrossRefGoogle ScholarPubMed
47. Alexander-Bloch, A, Giedd, JN, Bullmore, E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci. 2013; 14(5): 322336.CrossRefGoogle ScholarPubMed
48. Li, X, Pu, F, Fan, Y, Niu, H, Li, S, Li, D. Age-related changes in brain structural covariance networks. Front Hum Neurosci. 2013; 7: 98.CrossRefGoogle ScholarPubMed
49. Zielinski, BA, Gennatas, ED, Zhou, J, Seeley, WW. Network-level structural covariance in the developing brain. Proc Natl Acad Sci U S A. 2010; 107(42): 1819118196.CrossRefGoogle ScholarPubMed
50. Rentería, ME, Hansell, NK, Strike, LT, et al. Genetic architecture of subcortical brain regions: common and region-specific genetic contributions. Genes Brain Behav. 2014; 13(8): 821830.CrossRefGoogle ScholarPubMed
51. Alexander-Bloch, A, Raznahan, A, Bullmore, E, Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J Neurosci. 2013; 33(7): 28892899.CrossRefGoogle ScholarPubMed
52. Stoner, R, Chow, ML, Boyle, MP, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014; 370(13): 12091219.CrossRefGoogle ScholarPubMed
53. Connors, SL, Levitt, P, Matthews, SG, et al. Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol. 2008; 38(3): 163176.CrossRefGoogle ScholarPubMed
54. Courchesne, E, Redcay, E, Kennedy, DP. The autistic brain: birth through adulthood. Curr Opin Neurol. 2004; 17(4): 489496.CrossRefGoogle ScholarPubMed
55. Raznahan, A, Toro, R, Daly, E, et al. Cortical anatomy in autism spectrum disorder: an in vivo MRI study on the effect of age. Cereb Cortex. 2010; 20(6): 13321340.CrossRefGoogle Scholar
56. Courchesne, E, Pierce, K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci. 2005; 23(2–3): 153170.CrossRefGoogle ScholarPubMed
57. Hazlett, HC, Gu, H, McKinstry, RC, et al. Brain volume findings in 6-month-old infants at high familial risk for autism. Am J Psychiatry. 2012; 169(6): 601608.CrossRefGoogle ScholarPubMed
58. Hazlett, HC, Perez-Rodriguez, MM, Ripoll, LH, et al. Early brain development in infants at high risk for autism spectrum disorder. Biological Psychiatry. 2013; 73(9 Suppl): 115S115S.Google Scholar
59. Dawson, G, Munson, J, Webb, SJ, Nalty, T, Abbott, R, Toth, K. Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry. 2007; 61(4): 458464.CrossRefGoogle ScholarPubMed
60. Zielinski, BA, Prigge, MB, Nielsen, JA, et al. Longitudinal changes in cortical thickness in autism and typical development. Brain. 2014; 137(6): 17991812.CrossRefGoogle ScholarPubMed
61. Courchesne, E, Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005; 15(2): 225230.CrossRefGoogle ScholarPubMed
62. Casanova, MF. The neuropathology of autism. Brain Pathol. 2007; 17(4): 422433.CrossRefGoogle ScholarPubMed
63. Casanova, MF. Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist. 2006; 12(5): 435441.CrossRefGoogle ScholarPubMed
64. Minshew, NJ, Williams, DL. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurology. 2007; 64(7): 945950.CrossRefGoogle ScholarPubMed
65. Courchesne, E, Karns, CM, Davis, HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001; 57(2): 245254.CrossRefGoogle Scholar
66. Courchesne, E, Carper, R, Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA. 2003; 290(3): 337344.CrossRefGoogle ScholarPubMed
67. Herbert, MR, Ziegler, DA, Deutsch, CK, et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain. 2003; 126(Pt 5): 11821192.CrossRefGoogle ScholarPubMed
68. Williams, CA, Dagli, A, Battaglia, A. Genetic disorders associated with macrocephaly. Am J Med Genet A. 2008; 146(15): 20232037.CrossRefGoogle Scholar
69. Chawarska, K, Campbell, D, Chen, L, Shic, F, Klin, A, Chang, J. Early generalized overgrowth in boys with autism. Arch Gen Psychiatry. 2011; 68(10): 10211031.CrossRefGoogle ScholarPubMed
70. Campbell, DJ, Chang, J, Chawarska, K. Early generalized overgrowth in autism spectrum disorder: prevalence rates, gender effects, and clinical outcomes. J Am Acad Child Adolesc Psychiatry. 2014; 53(10): 10631073.CrossRefGoogle ScholarPubMed
71. Conciatori, M, Stodgell, CJ, Hyman, SL, et al. Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism. Biol Psychiatry. 2004; 55(4): 413419.CrossRefGoogle ScholarPubMed
72. Muscarella, LA, Guarnieri, V, Sacco, R, et al. HOXA1 gene variants influence head growth rates in humans. Am J Med Genet B Neuropsychiatr Genet. 2007; 144(3): 388390.CrossRefGoogle Scholar
73. Coon, H, Dunn, D, Lainhart, J, et al. Possible association between autism and variants in the brain‐expressed tryptophan hydroxylase gene (TPH2). Am J Med Genet B Neuropsychiatr Genet. 2005; 135(1): 4246.CrossRefGoogle Scholar
74. Ramoz, N, Cai, G, Reichert, JG, et al. Family‐based association study of TPH1 and TPH2 polymorphisms in autism. Am J Med Genet B Neuropsychiatr Genet. 2006; 141(8): 861867.CrossRefGoogle Scholar
75. Sacco, R, Militerni, R, Frolli, A, et al. Clinical, morphological, and biochemical correlates of head circumference in autism. Biol Psychiatry. 2007; 62(9): 10381047.CrossRefGoogle ScholarPubMed
76. Egawa, J, Watanabe, Y, Nunokawa, A, et al. A detailed association analysis between the tryptophan hydroxylase 2 (TPH2) gene and autism spectrum disorders in a Japanese population. Psychiatry Res. 2012; 196(2–3): 320322.CrossRefGoogle Scholar
77. Peculis, R, Konrade, I, Skapare, E, et al. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene. 2013; 515(1): 140143.CrossRefGoogle ScholarPubMed
78. Gabriele, S, Lombardi, F, Sacco, R, et al. The GLO1 C332 (Ala111) allele confers autism vulnerability: family-based genetic association and functional correlates. J Psychiatr Res. 2014; 59: 108116.CrossRefGoogle ScholarPubMed
79. Varga, EA, Pastore, M, Prior, T, Herman, GE, McBride, KL. The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med. 2009; 11(2): 111117.CrossRefGoogle Scholar
80. Buxbaum, JD, Cai, G, Chaste, P, et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet. 2007; 144(4): 484491.CrossRefGoogle Scholar
81. McBride, KL, Varga, EA, Pastore, MT, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010; 3(3): 137141.CrossRefGoogle ScholarPubMed
82. Frazier, TW, Embacher, R, Tilot, A, Koenig, K, Mester, J, Eng, C. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. In press. DOI: 10.1038/mp.2014.125.Google Scholar
83. Stevenson, RE, Schroer, RJ, Skinner, C, Fender, D, Simensen, RJ. Autism and macrocephaly. Lancet. 1997; 349(9067): 17441745.CrossRefGoogle ScholarPubMed
84. Fidler, DJ, Bailey, JN, Smalley, SL. Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol. 2000; 42(11): 737740.CrossRefGoogle ScholarPubMed
85. Lainhart, JE, Piven, J, Wzorek, M, et al. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry. 1997; 36(2): 282290.CrossRefGoogle ScholarPubMed
86. Desikan, RS, Ségonne, F, Fischl, B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006; 31(3): 968980.CrossRefGoogle ScholarPubMed
87. Mori, S, Oishi, K, Jiang, H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008; 40(2): 570582.CrossRefGoogle Scholar
88. Mori, S, Oishi, K, Faria, AV. White matter atlases based on diffusion tensor imaging. Curr Opin Neurol. 2009; 22(4): 362369.CrossRefGoogle ScholarPubMed
89. Wakana, S, Jiang, H, Nagae-Poetscher, LM, Van Zijl, PC, Mori, S. Fiber tract–based atlas of human white matter anatomy 1. Radiology. 2004; 230(1): 7787.CrossRefGoogle Scholar
90. Raznahan, A, Giedd, JN, Bolton, PF. Neurostructural endophenotypes in autism spectrum disorder. In: Ritsner MS, ed. The Handbook of Ne uropsychiatric Biomarkers, Endophenotypes and Genes, Volume II: Neuroanatomical and Neuroimaging Endophentypes and Biomarkers . Springer, Netherlands; 2009: 145169.CrossRefGoogle Scholar
91. Anagnostou, E, Taylor, MJ. Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism. 2011; 2(1): 4.CrossRefGoogle Scholar
92. Jordan, I, Murphy, D. Update on neuroimaging findings in autism spectrum disorder. Advances in Mental Health and Intellectual Disabilities. 2011; 5(6): 1931.CrossRefGoogle Scholar
93. Stigler, KA, McDonald, BC, Anand, A, Saykin, AJ, McDougle, CJ. Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res. 2011; 1380: 146161.CrossRefGoogle ScholarPubMed
94. Travers, BG, Adluru, N, Ennis, C, et al. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012; 5(5): 289313.CrossRefGoogle ScholarPubMed
95. Casanova, MF, El-Baz, AS, Suri, J, eds. Ima ging the Brain in Autism . Springer-Verlag, New York; 2013. Ebook. Accessed January 11, 2015.CrossRefGoogle Scholar
96. Barnea-Goraly, N, Marzelli, MJ. Introduction to neuroimaging research in autism spectrum disorders. In: Patel VB, Preedy VR, Martin CR, eds. Compr ehensive Guide to Autism . Springer-Verlag, New York; 2014: 893909.CrossRefGoogle Scholar
97. Dichter, GS. Functional magnetic resonance imaging of autism spectrum disorders. Dialogues Clin Neurosci. 2012; 14(3): 319351.Google ScholarPubMed
98. Goldman-Rakic, PS. Development of cortical circuitry and cognitive function. Child Dev. 1987; 58(3): 601622.CrossRefGoogle ScholarPubMed
99. Panizzon, MS, Fennema-Notestine, C, Eyler, LT, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009; 19(11): 27282735.CrossRefGoogle ScholarPubMed
100. Hazlett, HC, Poe, M, Gerig, G, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry. 2005; 62(12): 13661376.CrossRefGoogle ScholarPubMed
101. Carper, RA, Moses, P, Tigue, ZD, Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage. 2002; 16(4): 10381051.CrossRefGoogle ScholarPubMed
102. Schumann, CM, Bloss, CS, Barnes, CC, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci. 2010; 30(12): 44194427.CrossRefGoogle ScholarPubMed
103. Hazlett, HC, Poe, MD, Gerig, G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry. 2011; 68(5): 467476.CrossRefGoogle ScholarPubMed
104. Carper, RA, Courchesne, E. Localized enlargement of the frontal cortex in early autism. Biol Psychiatry. 2005; 57(2): 126133.CrossRefGoogle ScholarPubMed
105. Mostofsky, SH, Burgess, MP, Larson, JCG. Increased motor cortex white matter volume predicts motor impairment in autism. Brain. 2007; 130(8): 21172122.CrossRefGoogle ScholarPubMed
106. Lemche, E, Giampietro, VP, Surguladze, SA, et al. Human attachment security is mediated by the amygdala: evidence from combined fMRI and psychophysiological measures. Hum Brain Mapp. 2006; 27(8): 623635.CrossRefGoogle ScholarPubMed
107. Baron-Cohen, S, Ring, HA, Bullmore, ET, Wheelwright, S, Ashwin, C, Williams, S. The amygdala theory of autism. Neurosci Biobehav Rev. 2000; 24(3): 355364.CrossRefGoogle ScholarPubMed
108. Howard, MA, Cowell, PE, Boucher, J, et al. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport. 2000; 11(13): 29312935.CrossRefGoogle ScholarPubMed
109. Sweeten, TL, Posey, DJ, Shekhar, A, McDougle, CJ. The amygdala and related structures in the pathophysiology of autism. Pharmacol Biochem Behav. 2002; 71(3): 449455.CrossRefGoogle ScholarPubMed
110. Schultz, RT. Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. Int J Dev Neurosci. 2005; 23(2): 125141.CrossRefGoogle ScholarPubMed
111. Courchesne, E, Pierce, K, Schumann, CM, et al. Mapping early brain development in autism. Neuron. 2007; 56(2): 399413.CrossRefGoogle ScholarPubMed
112. Schumann, CM, Barnes, CC, Lord, C, Courchesne, E. Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry. 2009; 66(10): 942949.CrossRefGoogle ScholarPubMed
113. Aylward, EH, Minshew, NJ, Goldstein, G, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology. 1999; 53(9): 21452150.CrossRefGoogle ScholarPubMed
114. Schumann, CM, Hamstra, J, Goodlin-Jones, BL, et al. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci. 2004; 24(28): 63926401.CrossRefGoogle Scholar
115. Stanfield, AC, McIntosh, AM, Spencer, MD, Philip, R, Gaur, S, Lawrie, SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008; 23(4): 289299.CrossRefGoogle ScholarPubMed
116. Ito, M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008; 9(4): 304313.CrossRefGoogle ScholarPubMed
117. Strick, PL, Dum, RP, Fiez, JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009; 32: 413434.CrossRefGoogle ScholarPubMed
118. Hodge, SM, Makris, N, Kennedy, DN, et al. Cerebellum, language, and cognition in autism and specific language impairment. J Autism Dev Disord. 2010; 40(3): 300316.CrossRefGoogle ScholarPubMed
119. Stoodley, CJ, Schmahmann, JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010; 46(7): 831844.CrossRefGoogle ScholarPubMed
120. Piven, J, Saliba, K, Bailey, J, Arndt, S. An MRI study of autism: the cerebellum revisited. Neurology. 1997; 49(2): 546551.CrossRefGoogle ScholarPubMed
121. Hardan, AY, Minshew, NJ, Harenski, K, Keshavan, MS. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry. 2001; 40(6): 666672.CrossRefGoogle ScholarPubMed
122. Sparks, BF, Friedman, SD, Shaw, DW, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology. 2002; 59(2): 184192.CrossRefGoogle ScholarPubMed
123. Courchesne, E, Yeung-Courchesne, R, Hesselink, JR, Jernigan, TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988; 318(21): 13491354.CrossRefGoogle ScholarPubMed
124. Murakami, JW, Courchesne, E, Press, GA, Yeung-Courchesne, R, Hesselink, JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989; 46(6): 689694.CrossRefGoogle ScholarPubMed
125. Saitoh, O, Courchesne, E. Magnetic resonance imaging study of the brain in autism. Psychiatry Clin Neurosci. 1998; 52(Suppl): S219S222.CrossRefGoogle ScholarPubMed
126. Courchesne, E, Townsend, J, Akshoomoff, NA, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994; 108(5): 848865.CrossRefGoogle ScholarPubMed
127. Carper, RA, Courchesne, E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000; 123(Pt 4): 836844.CrossRefGoogle ScholarPubMed
128. Allen, G. The cerebellum in autism. Clin Neuropsychiatry. 2005; 2(6): 321337.Google Scholar
129. Courchesne, E, Campbell, K, Solso, S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011; 1380: 138145.CrossRefGoogle ScholarPubMed
130. Duerden, EG, Mak‐Fan, KM, Taylor, MJ, Roberts, SW. Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta‐analysis. Autism Res. 2012; 5(1): 4966.CrossRefGoogle ScholarPubMed
131. Yu, KK, Cheung, C, Chua, SE, McAlonan, GM. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci. 2011; 36(6): 412421.CrossRefGoogle ScholarPubMed
132. Stoodley, CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014; 8: 92.CrossRefGoogle ScholarPubMed
133. Cleavinger, HB, Bigler, ED, Johnson, JL, Lu, J, McMahon, W, Lainhart, JE. Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism. J Int Neuropsychol Soc. 2008; 14(3): 401413.CrossRefGoogle ScholarPubMed
134. Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990; 13(7): 266271.CrossRefGoogle ScholarPubMed
135. Middleton, FA, Strick, PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000; 42(2): 183200.CrossRefGoogle ScholarPubMed
136. Bostan, AC, Dum, RP, Strick, PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013; 17(5): 241254.CrossRefGoogle ScholarPubMed
137. Utter, AA, Basso, MA. The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev. 2008; 32(3): 333342.CrossRefGoogle ScholarPubMed
138. Hollander, E, Anagnostou, E, Chaplin, W, et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry. 2005; 58(3): 226232.CrossRefGoogle ScholarPubMed
139. Estes, A, Shaw, DWW, Sparks, BF, et al. Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Res. 2011; 4(3): 212220.CrossRefGoogle ScholarPubMed
140. Sears, LL, Vest, C, Mohamed, S, Bailey, J, Ranson, BJ, Piven, J. An MRI study of the basal ganglia in autism. Prog Neuropsychopharmacol Biol Psychiatry. 1999; 23(4): 613624.CrossRefGoogle ScholarPubMed
141. Voelbel, GT, Bates, ME, Buckman, JF, Pandina, G, Hendren, RL. Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? Biol Psychiatry. 2006; 60(9): 942950.CrossRefGoogle ScholarPubMed
142. Langen, M, Durston, S, Staal, WG, Palmen, SJ, van Engeland, H. Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry. 2007; 62(3): 262266.CrossRefGoogle ScholarPubMed
143. Hardan, AY, Kilpatrick, M, Keshavan, MS, Minshew, NJ. Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J Child Neurol. 2003; 18(5): 317324.CrossRefGoogle ScholarPubMed
144. Qiu, A, Adler, M, Crocetti, D, Miller, MI, Mostofsky, SH. Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2010; 49(6): 539551.Google ScholarPubMed
145. Gazzaniga, MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain. 2000; 123(Pt 7): 12931326.CrossRefGoogle ScholarPubMed
146. Anderson, JS, Druzgal, TJ, Froehlich, A, et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011; 21(5): 11341146.CrossRefGoogle ScholarPubMed
147. Frazier, TW, Hardan, AY. A meta-analysis of the corpus callosum in autism. Biol Psychiatry. 2009; 66(10): 935941.CrossRefGoogle ScholarPubMed
148. Egaas, B, Courchesne, E, Saitoh, O. Reduced size of corpus callosum in autism. Arch Neurol. 1995; 52(8): 794801.CrossRefGoogle ScholarPubMed
149. Hardan, AY, Minshew, NJ, Keshavan, MS. Corpus callosum size in autism. Neurology. 2000; 55(7): 10331036.CrossRefGoogle ScholarPubMed
150. Waiter, GD, Williams, JH, Murray, AD, Gilchrist, A, Perrett, DI, Whiten, A. Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage. 2005; 24(2): 455461.CrossRefGoogle ScholarPubMed
151. Piven, J, Bailey, J, Ranson, BJ, Arndt, S. An MRI study of the corpus callosum in autism. Am J Psychiatry. 1997; 154(8): 10511056.Google ScholarPubMed
152. Freitag, CM, Luders, E, Hulst, HE, et al. Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biol Psychiatry. 2009; 66(4): 316319.CrossRefGoogle Scholar
153. Just, MA, Cherkassky, VL, Keller, TA, Kana, RK, Minshew, NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007; 17(4): 951961.CrossRefGoogle ScholarPubMed
154. Alexander, AL, Lee, JE, Lazar, M, et al. Diffusion tensor imaging of the corpus callosum in autism. Neuroimage. 2007; 34(1): 6173.CrossRefGoogle ScholarPubMed
155. Mason, RA, Williams, DL, Kana, RK, Minshew, N, Just, MA. Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia. 2008; 46(1): 269280.CrossRefGoogle ScholarPubMed
156. Kilian, S, Brown, WS, Hallam, BJ, et al. Regional callosal morphology in autism and macrocephaly. Dev Neuropsychol. 2007; 33(1): 7499.CrossRefGoogle Scholar
157. Rice, SA, Bigler, ED, Cleavinger, HB, et al. Macrocephaly, corpus callosum morphology, and autism. J Child Neurol. 2005; 20(1): 3441.CrossRefGoogle ScholarPubMed
158. Lefebvre, A, Beggiato, A, Bourgeron, T, Toro, R. Neuroanatomical diversity of corpus callosum and brain volume in the Autism Brain Imaging Data Exchange (ABIDE) project. Biol Psychiatry. In press. DOI: 10.1016/j.biopsych.2015.02.010.Google Scholar
159. Aylward, EH, Minshew, NJ, Goldstein, G, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology. 1999; 53(9): 21452150.CrossRefGoogle ScholarPubMed
160. Haznedar, MM, Buchsbaum, MS, Wei, T, et al. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry. 2000; 157(12): 19942001.CrossRefGoogle ScholarPubMed
161. Bigler, ED, Tate, DF, Neeley, ES, et al. Temporal lobe, autism, and macrocephaly. AJNR Am J Neuroradiol. 2003; 24(10): 20662076.Google ScholarPubMed
162. Nicolson, R, DeVito, TJ, Vidal, CN, et al. Detection and mapping of hippocampal abnormalities in autism. Psychiatry Res. 2006; 148(1): 1121.CrossRefGoogle ScholarPubMed
163. Groen, W, Teluij, M, Buitelaar, J, Tendolkar, I. Amygdala and hippocampus enlargement during adolescence in autism. J Am Acad Child Adolesc Psychiatry. 2010; 49(6): 552560.Google ScholarPubMed
164. Barnea-Goraly, N, Frazier, TW, Piacenza, L, et al. A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 48: 124128.CrossRefGoogle ScholarPubMed
165. Herbert, MR, Harris, GJ, Adrien, KT, et al. Abnormal asymmetry in language association cortex in autism. Ann Neurol. 2002; 52(5): 588596.CrossRefGoogle ScholarPubMed
166. Pierce, K, Muller, RA, Ambrose, J, Allen, G, Courchesne, E. Face processing occurs outside the fusiform 'face area' in autism: evidence from functional MRI. Brain. 2001; 124(Pt 10): 20592073.CrossRefGoogle ScholarPubMed
167. Toal, F, Daly, E, Page, L, et al. Clinical and anatomical heterogeneity in autistic spectrum disorder: a structural MRI study. Psychol Med. 2010; 40(7): 11711181.CrossRefGoogle ScholarPubMed
168. Waiter, GD, Williams, JH, Murray, AD, Gilchrist, A, Perrett, DI, Whiten, A. A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. Neuroimage. 2004; 22(2): 619625.CrossRefGoogle ScholarPubMed
169. Levitt, JG, Blanton, RE, Smalley, S, et al. Cortical sulcal maps in autism. Cereb Cortex. 2003; 13(7): 728735.CrossRefGoogle ScholarPubMed
170. Boddaert, N, Chabane, N, Gervais, H, et al. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage. 2004; 23(1): 364369.CrossRefGoogle ScholarPubMed
171. Zilbovicius, M, Meresse, I, Chabane, N, Brunelle, F, Samson, Y, Boddaert, N. Autism, the superior temporal sulcus and social perception. Trends Neurosci. 2006; 29(7): 359366.CrossRefGoogle ScholarPubMed
172. Rojas, DC, Bawn, SD, Benkers, TL, Reite, ML, Rogers, SJ. Smaller left hemisphere planum temporale in adults with autistic disorder. Neurosci Lett. 2002; 328(3): 237240.CrossRefGoogle ScholarPubMed
173. Rojas, DC, Camou, SL, Reite, ML, Rogers, SJ. Planum temporale volume in children and adolescents with autism. J Autism Dev Disord. 2005; 35(4): 479486.CrossRefGoogle ScholarPubMed
174. Abell, F, Krams, M, Ashburner, J, et al. The neuroanatomy of autism: a voxel‐based whole brain analysis of structural scans. Neuroreport. 1999; 10(8): 16471651.CrossRefGoogle ScholarPubMed
175. Jou, RJ, Minshew, NJ, Melhem, NM, Keshavan, MS, Hardan, AY. Brainstem volumetric alterations in children with autism. Psychol Med. 2009; 39(8): 13471354.CrossRefGoogle ScholarPubMed
176. Shukla, DK, Keehn, B, Müller, R. Tract‐specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder. J Child Psychol Psychiatry. 2011; 52(3): 286295.CrossRefGoogle ScholarPubMed
177. Catani, M. Diffusion tensor magnetic resonance imaging tractography in cognitive disorders. Curr Opin Neurol. 2006; 19(6): 599606.CrossRefGoogle ScholarPubMed
178. Alexander, AL, Lee, JE, Lazar, M, Field, AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007; 4(3): 316329.CrossRefGoogle Scholar
179. Chanraud, S, Zahr, N, Sullivan, EV, Pfefferbaum, A. MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychol Rev. 2010; 20(2): 209225.CrossRefGoogle ScholarPubMed
180. Mukherjee, P, McKinstry, RC. Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am. 2006; 16(1): 1943.CrossRefGoogle ScholarPubMed
181. White, T, Nelson, M, Lim, KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging. 2008; 19(2): 97109.CrossRefGoogle ScholarPubMed
182. Jou, RJ, Jackowski, AP, Papademetris, X, Rajeevan, N, Staib, LH, Volkmar, FR. Diffusion tensor imaging in autism spectrum disorders: preliminary evidence of abnormal neural connectivity. Aust N Z J Psychiatry. 2011; 45(2): 153162.CrossRefGoogle ScholarPubMed
183. Herbert, MR, Ziegler, DA, Makris, N, et al. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol. 2004; 55(4): 530540.CrossRefGoogle ScholarPubMed
184. Shukla, DK, Keehn, B, Smylie, DM, Müller, RA. Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder. Neuropsychologia. 2011; 49(5): 13781382.CrossRefGoogle ScholarPubMed
185. Casanova, MF, van Kooten, IA, Switala, AE, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006; 112(3): 287303.CrossRefGoogle ScholarPubMed
186. Casanova, MF. Intracortical circuitry: one of psychiatry’s missing assumptions. Eur Arch Psychiatry Clin Neurosci. 2004; 254(3): 148151.CrossRefGoogle ScholarPubMed
187. Buxhoeveden, D, Semendeferi, K, Buckwalter, J, Schenker, N, Switzer, R, Courchesne, E. Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol. 2006; 32(5): 483491.CrossRefGoogle ScholarPubMed
188. Barnea-Goraly, N, Kwon, H, Menon, V, Eliez, S, Lotspeich, L, Reiss, AL. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004; 55(3): 323326.CrossRefGoogle ScholarPubMed
189. Courchesne, E, Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005; 15(2): 225230.CrossRefGoogle ScholarPubMed
190. Lee, JE, Bigler, ED, Alexander, AL, et al. Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neurosci Lett. 2007; 424(2): 127132.CrossRefGoogle ScholarPubMed
191. Sundaram, SK, Kumar, A, Makki, MI, Behen, ME, Chugani, HT, Chugani, DC. Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex. 2008; 18(11): 26592665.CrossRefGoogle ScholarPubMed
192. Kumar, A, Sundaram, SK, Sivaswamy, L, et al. Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex. 2010; 20(9): 21032113.CrossRefGoogle ScholarPubMed
193. Shukla, DK, Keehn, B, Smylie, DM, Müller, R. Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder. Neuropsychologia. 2011; 49(5): 13781382.CrossRefGoogle ScholarPubMed
194. Ben Bashat, D, Kronfeld-Duenias, V, Zachor, DA, et al. Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage. 2007; 37(1): 4047.CrossRefGoogle Scholar
195. Barnea-Goraly, N, Lotspeich, LJ, Reiss, AL. Similar white matter aberrations in children with autism and their unaffected siblings: a diffusion tensor imaging study using tract-based spatial statistics. Arch Gen Psychiatry. 2010; 67(10): 10521060.CrossRefGoogle ScholarPubMed
196. Peterson, D, Mahajan, R, Crocetti, D, Mejia, A, Mostofsky, S. Left‐hemispheric microstructural abnormalities in children with high‐functioning autism spectrum disorder. Autism Res. 2015; 8(1): 6172.CrossRefGoogle ScholarPubMed
197. Dawson, G, Warrenburg, S, Fuller, P. Cerebral lateralization in individuals diagnosed as autistic in early childhood. Brain Lang. 1982; 15(2): 353368.CrossRefGoogle ScholarPubMed
198. Dawson, G. Lateralized brain dysfunction in autism: evidence from the Halstead-Reitan neuropsychological battery. J Autism Dev Disord. 1983; 13(3): 269286.CrossRefGoogle ScholarPubMed
199. Escalante-Mead, PR, Minshew, NJ, Sweeney, JA. Abnormal brain lateralization in high-functioning autism. J Autism Dev Disord. 2003; 33(5): 539543.CrossRefGoogle ScholarPubMed
200. Kleinhans, NM, Müller, R, Cohen, DN, Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008; 1221: 115125.CrossRefGoogle ScholarPubMed
201. Hubl, D, Bolte, S, Feineis-Matthews, S, et al. Functional imbalance of visual pathways indicates alternative face processing strategies in autism. Neurology. 2003; 61(9): 12321237.CrossRefGoogle ScholarPubMed
202. Dalton, KM, Nacewicz, BM, Johnstone, T, et al. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci. 2005; 8(4): 519526.CrossRefGoogle ScholarPubMed
203. Pelphrey, KA, Morris, JP, McCarthy, G, Labar, KS. Perception of dynamic changes in facial affect and identity in autism. Soc Cogn Affect Neurosci. 2007; 2(2): 140149.CrossRefGoogle ScholarPubMed
204. Humphreys, K, Hasson, U, Avidan, G, Minshew, N, Behrmann, M. Cortical patterns of category‐selective activation for faces, places and objects in adults with autism. Autism Res. 2008; 1(1): 5263.CrossRefGoogle ScholarPubMed
205. Klin, A. Three things to remember if you are a functional magnetic resonance imaging researcher of face processing in autism spectrum disorders. Biol Psychiatry. 2008; 64(7): 549551.CrossRefGoogle ScholarPubMed
206. Corbett, BA, Carmean, V, Ravizza, S, et al. A functional and structural study of emotion and face processing in children with autism. Psychiatry Res. 2009; 173(3): 196205.CrossRefGoogle ScholarPubMed
207. Pierce, K, Glad, KS, Schreibman, L. Social perception in children with autism: an attentional deficit? J Autism Dev Disord. 1997; 27(3): 265282.CrossRefGoogle Scholar
208. Dawson, G, Meltzoff, AN, Osterling, J, Rinaldi, J, Brown, E. Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord. 1998; 28(6): 479485.CrossRefGoogle ScholarPubMed
209. Schultz, RT, Grelotti, DJ, Klin, A, et al. The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B Biol Sci. 2003; 358(1430): 415427.CrossRefGoogle ScholarPubMed
210. Jones, W, Carr, K, Klin, A. Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch Gen Psychiatry. 2008; 65(8): 946954.CrossRefGoogle ScholarPubMed
211. Ishitobi, M, Kosaka, H, Omori, M, et al. Differential amygdala response to lower face in patients with autistic spectrum disorders: an fMRI study. Research in Autism Spectrum Disorders. 2011; 5(2): 910919.CrossRefGoogle Scholar
212. Paul, LK, Corsello, C, Tranel, D, Adolphs, R. Does bilateral damage to the human amygdala produce autistic symptoms? J Neurodev Disord. 2010; 2(3): 165173.CrossRefGoogle ScholarPubMed
213. Aoki, Y, Cortese, S, Tansella, M. Neural bases of atypical emotional face processing in autism: a meta-analysis of fMRI studies. World J Biol Psychiatry. In press. DOI: 10.3109/15622975.2014.957719.Google Scholar
214. Yucel, G, Parlier, M, Adolphs, R, et al. Face processing in the broad autism phenotype: an fMRI study. Biol Psychiatry. 2010; 67: 43S.Google Scholar
215. Ahmed, AA, Vander Wyk, BC. Neural processing of intentional biological motion in unaffected siblings of children with autism spectrum disorder: an fMRI study. Brain Cogn. 2013; 83(3): 297306.CrossRefGoogle Scholar
216. Ciaramidaro, A, Bolte, S, Schlitt, S, et al. Schizophrenia and autism as contrasting minds: neural evidence for the hypo-hyper-intentionality hypothesis. Schizophr Bull. 2015; 41(1): 171179.CrossRefGoogle ScholarPubMed
217. Kaiser, MD, Hudac, CM, Shultz, S, et al. Neural signatures of autism. Proc Natl Acad Sci U S A. 2010; 107(49): 2122321228.CrossRefGoogle ScholarPubMed
218. Iacoboni, M. Imitation, empathy, and mirror neurons. Annu Rev Psychol. 2009; 60: 653670.CrossRefGoogle ScholarPubMed
219. Leslie, KR, Johnson-Frey, SH, Grafton, ST. Functional imaging of face and hand imitation: towards a motor theory of empathy. Neuroimage. 2004; 21(2): 601607.CrossRefGoogle ScholarPubMed
220. Dapretto, M, Davies, MS, Pfeifer, JH, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2005; 9(1): 2830.CrossRefGoogle ScholarPubMed
221. Iacoboni, M, Dapretto, M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006; 7(12): 942951.CrossRefGoogle ScholarPubMed
222. Southgate, V, Hamilton, AF. Unbroken mirrors: challenging a theory of autism. Trends Cogn Sci. 2008; 12(6): 225229.CrossRefGoogle ScholarPubMed
223. Kleinhans, NM, Müller, R, Cohen, DN, Courchesne, E. Atypical functional lateralization of language in autism spectrum disorders. Brain Res. 2008; 1221: 115125.CrossRefGoogle ScholarPubMed
224. Kana, RK, Keller, TA, Cherkassky, VL, Minshew, NJ, Just, MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006; 129(Pt 9): 24842493.CrossRefGoogle ScholarPubMed
225. Wang, AT, Lee, SS, Sigman, M, Dapretto, M. Neural basis of irony comprehension in children with autism: the role of prosody and context. Brain. 2006; 129(Pt 4): 932943.CrossRefGoogle Scholar
226. Eigsti, I, Schuh, J, Mencl, E, Schultz, RT, Paul, R. The neural underpinnings of prosody in autism. Child Neuropsychol. 2012; 18(6): 600617.CrossRefGoogle ScholarPubMed
227. Knaus, TA, Silver, AM, Lindgren, KA, Hadjikhani, N, Tager-Flusberg, H. fMRI activation during a language task in adolescents with ASD. J Int Neuropsychol Soc. 2008; 14(6): 967979.CrossRefGoogle ScholarPubMed
228. Eyler, LT, Pierce, K, Courchesne, E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain. 2012; 135(Pt 3): 949960.CrossRefGoogle ScholarPubMed
229. Mody, M, Manoach, DS, Guenther, FH, et al. Speech and language in autism spectrum disorder: a view through the lens of behavior and brain imaging. Neuropsychiatry. 2013; 3(2): 223232.CrossRefGoogle Scholar
230. Mosconi, M, Kay, M, D’Cruz, A, et al. Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychol Med. 2009; 39(9): 15591566.CrossRefGoogle ScholarPubMed
231. Solomon, M, Ozonoff, SJ, Ursu, S, et al. The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia. 2009; 47(12): 25152526.CrossRefGoogle ScholarPubMed
232. Lewis, M, Kim, S. The pathophysiology of restricted repetitive behavior. J Neurodev Disord. 2009; 1(2): 114132.CrossRefGoogle ScholarPubMed
233. Delmonte, S, Gallagher, L, O'Hanlon, E, McGrath, J, Balsters, JH. Functional and structural connectivity of frontostriatal circuitry in autism spectrum disorder. Front Hum Neurosci. 2013; 7: 430.CrossRefGoogle ScholarPubMed
234. Mandy, WP, Skuse, DH. Research review: What is the association between the social‐communication element of autism and repetitive interests, behaviours and activities? J Child Psychol Psychiatry. 2008; 49(8): 795808.CrossRefGoogle ScholarPubMed
235. Ronald, A, Happé, F, Bolton, P, et al. Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry. 2006; 45(6): 691699.CrossRefGoogle ScholarPubMed
236. Silverman, JM, Smith, CJ, Schmeidler, J, et al. Symptom domains in autism and related conditions: evidence for familiality. Am J Med Genet. 2002; 114(1): 6473.CrossRefGoogle ScholarPubMed
237. Just, MA, Keller, TA, Malave, VL, Kana, RK, Varma, S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012; 36(4): 12921313.CrossRefGoogle ScholarPubMed
238. Just, MA, Cherkassky, VL, Keller, TA, Kana, RK, Minshew, NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007; 17(4): 951961.CrossRefGoogle ScholarPubMed
239. Just, MA, Cherkassky, VL, Keller, TA, Minshew, NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004; 127(Pt 8): 18111821.CrossRefGoogle ScholarPubMed
240. Mostofsky, SH, Powell, SK, Simmonds, DJ, Goldberg, MC, Caffo, B, Pekar, JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009; 132(Pt 9): 24132425.CrossRefGoogle ScholarPubMed
241. Kana, RK, Keller, TA, Cherkassky, VL, Minshew, NJ, Just, MA. Atypical frontal-posterior synchronization of theory of mind regions in autism during mental state attribution. Social Neurosci. 2009; 4(2): 135152.CrossRefGoogle ScholarPubMed
242. Koshino, H, Carpenter, PA, Minshew, NJ, Cherkassky, VL, Keller, TA, Just, MA. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005; 24(3): 810821.CrossRefGoogle Scholar
243. Koshino, H, Kana, RK, Keller, TA, Cherkassky, VL, Minshew, NJ, Just, MA. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex. 2008; 18(2): 289300.CrossRefGoogle ScholarPubMed
244. Kana, RK, Keller, TA, Minshew, NJ, Just, MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry. 2007; 62(3): 198206.CrossRefGoogle ScholarPubMed
245. Damarla, SR, Keller, TA, Kana, RK, et al. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Res. 2010; 3(5): 273279.CrossRefGoogle ScholarPubMed
246. Biswal, B, Zerrin Yetkin, F, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med. 1995; 34(4): 537541.CrossRefGoogle ScholarPubMed
247. Huettel, SA, Song, AW, McCarthy, G. Functional Magnetic Resonance Imaging. Vol 1. Sinauer Associates: Sunderland, MA; 2004.Google Scholar
248. van den Heuvel, MP, Hulshoff Pol, HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacology. 2010; 20(8): 519534.CrossRefGoogle ScholarPubMed
249. Van Dijk, KR, Hedden, T, Venkataraman, A, Evans, KC, Lazar, SW, Buckner, RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol. 2010; 103(1): 297321.CrossRefGoogle Scholar
250. Uddin, LQ. The self in autism: an emerging view from neuroimaging. Neurocase. 2011; 17(3): 201208.CrossRefGoogle ScholarPubMed
251. Keown, CL, Shih, P, Nair, A, Peterson, N, Mulvey, ME, Müller, R. Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 2013; 5(3): 567572.CrossRefGoogle ScholarPubMed
252. Buckner, RL, Andrews‐Hanna, JR, Schacter, DL. The brain’s default network. Ann N Y Acad Sci. 2008; 1124(1): 138.CrossRefGoogle ScholarPubMed
253. Assaf, M, Jagannathan, K, Calhoun, VD, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage. 2010; 53(1): 247256.CrossRefGoogle ScholarPubMed
254. Uddin, LQ, Supekar, K, Menon, V. Typical and atypical development of functional human brain networks: insights from resting-state fMRI. Front Syst Neurosci. 2010; 4: 21.CrossRefGoogle ScholarPubMed
255. Supekar, K, Uddin, LQ, Prater, K, Amin, H, Greicius, MD, Menon, V. Development of functional and structural connectivity within the default mode network in young children. Neuroimage. 2010; 52(1): 290301.CrossRefGoogle ScholarPubMed
256. Cherkassky, VL, Kana, RK, Keller, TA, Just, MA. Functional connectivity in a baseline resting-state network in autism. Neuroreport. 2006; 17(16): 16871690.CrossRefGoogle Scholar
257. Nebel, MB, Joel, SE, Muschelli, J, et al. Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp. 2014; 35(2): 567580.CrossRefGoogle ScholarPubMed
258. Ecker, C, Murphy, D. Neuroimaging in autism-from basic science to translational research. Nat Rev Neurol. 2014; 10(2): 8291.CrossRefGoogle Scholar
259. Reiersen, AM, Todorov, AA. Association between DRD4 genotype and autistic symptoms in DSM-IV ADHD. J Can Acad Child Adolesc Psychiatry. 2011; 20(1): 1521.Google ScholarPubMed
260. Ronald, A, Simonoff, E, Kuntsi, J, Asherson, P, Plomin, R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J Child Psychol Psychiatry. 2008; 49(5): 535542.CrossRefGoogle Scholar
261. Reiersen, AM, Constantino, JN, Volk, HE, Todd, RD. Autistic traits in a population-based ADHD twin sample. J Child Psychol Psychiatry. 2007; 48(5): 464472.CrossRefGoogle Scholar
262. Murray, MJ. Attention-deficit/hyperactivity disorder in the context of autism spectrum disorders. Curr Psychiatry Rep. 2010; 12(5): 382388.CrossRefGoogle ScholarPubMed
263. Hanson, E, Cerban, B, Slater, C, Caccamo, L, Bacic, J, Chan, E. Brief report: Prevalence of attention deficit/hyperactivity disorder among individuals with an autism spectrum disorder. J Autism Dev Disord. 2013; 43(6): 14591464.CrossRefGoogle ScholarPubMed
264. Rommelse, NN, Franke, B, Geurts, HM, Hartman, CA, Buitelaar, JK. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2010; 19(3): 281295.CrossRefGoogle ScholarPubMed
265. Kotte, A, Joshi, G, Fried, R, et al. Autistic traits in children with and without ADHD. Pediatrics. 2013; 132(3): e612e622.CrossRefGoogle ScholarPubMed
266. Shaw, P, Eckstrand, K, Sharp, W, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007; 104(49): 1964919654.CrossRefGoogle ScholarPubMed
267. Rommelse, NNJ, Geurts, HM, Franke, B, Buitelaar, JK, Hartman, CA. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev. 2011; 35(6): 13631396.CrossRefGoogle ScholarPubMed
268. Gargaro, BA, Rinehart, NJ, Bradshaw, JL, Tonge, BJ, Sheppard, DM. Autism and ADHD: how far have we come in the comorbidity debate? Neurosci Biobehav Rev. 2011; 35(5): 10811088.CrossRefGoogle ScholarPubMed
269. White, SW, Schry, AR, Maddox, BB. Brief report: The assessment of anxiety in high-functioning adolescents with autism spectrum disorder. J Autism Dev Disord. 2012; 42(6): 11381145.CrossRefGoogle ScholarPubMed
270. Vasa, RA, Carroll, LM, Nozzolillo, AA, et al. A systematic review of treatments for anxiety in youth with autism spectrum disorders. J Autism Dev Disord. 2014; 44(12): 32153229.CrossRefGoogle Scholar
Cited by