Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T13:12:25.878Z Has data issue: false hasContentIssue false

The role of reproductive hormones in postpartum depression

Published online by Cambridge University Press:  29 September 2014

Crystal Edler Schiller*
Affiliation:
Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
Samantha Meltzer-Brody
Affiliation:
Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
David R. Rubinow
Affiliation:
Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
*
*Address for correspondence: Dr. Crystal Edler Schiller, 234 Medical School Wing D, Campus Box 7160, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7160, USA. (Email: crystal_schiller@med.unc.edu)

Abstract

Despite decades of research aimed at identifying the causes of postpartum depression (PPD), PPD remains common, and the causes are poorly understood. Many have attributed the onset of PPD to the rapid perinatal change in reproductive hormones. Although a number of human and nonhuman animal studies support the role of reproductive hormones in PPD, several studies have failed to detect an association between hormone concentrations and PPD. The purpose of this review is to examine the hypothesis that fluctuations in reproductive hormone levels during pregnancy and the postpartum period trigger PPD in susceptible women. We discuss and integrate the literature on animal models of PPD and human studies of reproductive hormones and PPD. We also discuss alternative biological models of PPD to demonstrate the potential for multiple PPD phenotypes and to describe the complex interplay of changing reproductive hormones and alterations in thyroid function, immune function, hypothalamic–pituitary–adrenal (HPA) axis function, lactogenic hormones, and genetic expression that may contribute to affective dysfunction. There are 3 primary lines of inquiry that have addressed the role of reproductive hormones in PPD: nonhuman animal studies, correlational studies of postpartum hormone levels and mood symptoms, and hormone manipulation studies. Reproductive hormones influence virtually every biological system implicated in PPD, and a subgroup of women seem to be particularly sensitive to the effects of perinatal changes in hormone levels. We propose that these women constitute a “hormone-sensitive” PPD phenotype, which should be studied independent of other PPD phenotypes to identify underlying pathophysiology and develop novel treatment targets.

Type
Review Article
Copyright
© Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Sarah Johnson and Erin Richardson for assisting with the literature review. This work was supported by the UNC Building Interdisciplinary Careers in Women’s Health (BIRCWH) Career Development Program (K12 HD001441) and the National Institute of Mental Health of the National Institutes of Health under Award Number R21MH101409. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

1. Gavin, NI, Gaynes, BN, Lohr, KN, Meltzer-Brody, S, Gartlehner, G, Swinson, T. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol. 2005; 106(5 Pt 1): 10711083.CrossRefGoogle ScholarPubMed
2. Hendrick, V, Altshuler, LL, Suri, R. Hormonal changes in the postpartum and implications for postpartum depression. Psychosomatics. 1998; 39(2): 93101.CrossRefGoogle ScholarPubMed
3. Bloch, M, Schmidt, PJ, Danaceau, M, Murphy, J, Nieman, L, Rubinow, DR. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry. 2000; 157(6): 924930.CrossRefGoogle ScholarPubMed
4. Galea, LA, Wide, JK, Barr, AM. Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression. Behav Brain Res. 2001; 122(1): 19.Google Scholar
5. Gregoire, AJ, Kumar, R, Everitt, B, Henderson, AF, Studd, JW. Transdermal oestrogen for treatment of severe postnatal depression. Lancet. 1996; 347(9006): 930933.CrossRefGoogle ScholarPubMed
6. Sichel, DA, Cohen, LS, Robertson, LM, Ruttenberg, A, Rosenbaum, JF. Prophylactic estrogen in recurrent postpartum affective disorder. Biol Psychiatry. 1995; 38(12): 814818.CrossRefGoogle ScholarPubMed
7. Stoffel, EC, Craft, RM. Ovarian hormone withdrawal-induced “depression” in female rats. Physiol Behav. 2004; 83(3): 505513.CrossRefGoogle Scholar
8. Suda, S, Segi-Nishida, E, Newton, SS, Duman, RS. A postpartum model in rat: behavioral and gene expression changes induced by ovarian steroid deprivation. Biol Psychiatry. 2008; 64(4): 311319.Google Scholar
9. Buckwalter, JG, Stanczyk, FZ, McCleary, CA, et al. Pregnancy, the postpartum, and steroid hormones: effects on cognition and mood. Psychoneuroendocrinology. 1999; 24(1): 6984.CrossRefGoogle ScholarPubMed
10. Heidrich, A, Schleyer, M, Spingler, H, et al. Postpartum blues: relationship between not-protein bound steroid hormones in plasma and postpartum mood changes. J Affect Disord. 1994; 30(2): 9398.Google Scholar
11. O’Hara, MW, Schlechte, JA, Lewis, DA, Varner, MW. Controlled prospective study of postpartum mood disorders: psychological, environmental, and hormonal variables. J Abnorm Psychol. 1991; 100(1): 6373.CrossRefGoogle ScholarPubMed
12. Ahokas, A, Kaukoranta, J, Wahlbeck, K, Aito, M. Estrogen deficiency in severe postpartum depression: successful treatment with sublingual physiologic 17beta-estradiol: a preliminary study. J Clin Psychiatry. 2001; 62(5): 332336.CrossRefGoogle ScholarPubMed
13. Beck, CT. Predictors of postpartum depression: an update. Nurs Res. 2001; 50(5): 275285.CrossRefGoogle ScholarPubMed
14. Collins, NL, Dunkel-Schetter, C, Lobel, M, Scrimshaw, SC. Social support in pregnancy: psychosocial correlates of birth outcomes and postpartum depression. J Pers Soc Psychol. 1993; 65(6): 12431258.CrossRefGoogle ScholarPubMed
15. O’Hara, MW, Swain, AM. Rates and risk of postpartum depression—a meta-analysis. Int Rev Psychiatry. 1996; 8(1): 3754.CrossRefGoogle Scholar
16. Bloch, M, Rotenberg, N, Koren, D, Klein, E. Risk factors for early postpartum depressive symptoms. Gen Hosp Psychiatry. 2006; 28(1): 38.CrossRefGoogle ScholarPubMed
17. O’Hara, MW, Neunaber, DJ, Zekoski, EM. Prospective study of postpartum depression: prevalence, course, and predictive factors. J Abnorm Psychol. 1984; 93(2): 158171.Google Scholar
18. Schiller, CE, O’Hara, MW, Rubinow, DR, Johnson, AK. Estradiol modulates anhedonia and behavioral despair in rats and negative affect in a subgroup of women at high risk for postpartum depression. Physiol Behav. 2013; 119: 137144.CrossRefGoogle Scholar
19. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.Google Scholar
20. Bernstein, IH, Rush, AJ, Yonkers, K, et al. Symptom features of postpartum depression: are they distinct? Depress Anxiety. 2008; 25(1): 2026.CrossRefGoogle ScholarPubMed
21. Wisner, KL, Sit, DY, McShea, MC, et al. Onset timing, thoughts of self-harm, and diagnoses in postpartum women with screen-positive depression findings. JAMA Psychiatry. 2013; 70(5): 490498.CrossRefGoogle ScholarPubMed
22. O’Hara, MW. Postpartum Depression: Causes and Consequences. New York: Springer-Verlag; 1995.Google Scholar
23. Vesga-Lopez, O, Blanco, C, Keyes, K, Olfson, M, Grant, BF, Hasin, DS. Psychiatric disorders in pregnant and postpartum women in the United States. Arch Gen Psychiatry. 2008; 65(7): 805815.CrossRefGoogle ScholarPubMed
24. Sit, D, Rothschild, AJ, Wisner, KL. A review of postpartum psychosis. J Womens Health (Larchmt). 2006; 15(4): 352368.Google Scholar
25. Wisner, KL, Peindl, K, Hanusa, BH. Symptomatology of affective and psychotic llnesses related to childbearing. J Affect Disord. 1994; 30(2): 7787.CrossRefGoogle ScholarPubMed
26. Brockington, IF, Cernik, KF, Schofield, EM, Downing, AR, Francis, AF, Keelan, C. Puerperal psychosis: phenomena and diagnosis. Arch Gen Psychiatry. 1981; 38(7): 829833.Google Scholar
27. Kendell, RE, Chalmers, JC, Platz, C. Epidemiology of puerperal psychoses. Br J Psychiatry. 1987; 150(5): 662673.Google Scholar
28. Forty, L, Jones, L, Macgregor, S, et al. Familiality of postpartum depression in unipolar disorder: results of a family study. Am J Psychiatry. 2006; 163(9): 15491553.Google Scholar
29. Deligiannidis, KM, Sikoglu, EM, Shaffer, SA, et al. GABAergic neuroactive steroids and resting-state functional connectivity in postpartum depression: a preliminary study. J Psychiatr Res. 2013; 47(6): 816828.CrossRefGoogle ScholarPubMed
30. Sohrabji, F, Miranda, RC, Toran-Allerand, CD. Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons. J Neurosci. 1994; 14(2): 459471.Google Scholar
31. Shimizu, E, Hashimoto, K, Okamura, N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003; 54(1): 7075.Google Scholar
32. Zhou, Y, Watters, JJ, Dorsa, DM. Estrogen rapidly induces the phosphorylation of the cAMP response element binding protein in rat brain. Endocrinology. 1996; 137(5): 21632166.Google Scholar
33. Sohrabji, F, Greene, LA, Miranda, RC, Toran-Allerand, CD. Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. J Neurobiol. 1994; 25(8): 974988.CrossRefGoogle ScholarPubMed
34. Cardona-Gomez, P, Perez, M, Avila, J, Garcia-Segura, L, Wandosell, F. Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol Cell Neurosci. 2004; 25(3): 363373.Google Scholar
35. Finocchi, C, Ferrari, M. Female reproductive steroids and neuronal excitability. Neurol Sci. 2011; 32(Suppl 1): S31S35.Google Scholar
36. Pluchino, N, Russo, M, Santoro, AN, Litta, P, Cela, V, Genazzani, AR. Steroid hormones and BDNF. Neuroscience. 2013; 239: 271279.Google Scholar
37. Rubinow, DR, Girdler, SS. Hormones, heart disease, and health: individualized medicine versus throwing the baby out with the bathwater. Depress Anxiety. 2011; 28(4): 282296.CrossRefGoogle ScholarPubMed
38. Berman, KF, Schmidt, PJ, Rubinow, DR, et al. Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proc Natl Acad Sci U S A. 1997; 94(16): 88368841.Google Scholar
39. Goldstein, JM, Jerram, M, Poldrack, R, et al. Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci. 2005; 25(40): 93099316.CrossRefGoogle ScholarPubMed
40. Protopopescu, X, Pan, H, Altemus, M, et al. Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proc Natl Acad Sci U S A. 2005; 102(44): 1606016065.CrossRefGoogle ScholarPubMed
41. Dreher, JC, Schmidt, PJ, Kohn, P, Furman, D, Rubinow, D, Berman, KF. Menstrual cycle phase modulates reward-related neural function in women. Proc Natl Acad Sci U S A. 2007; 104(7): 24652470.CrossRefGoogle ScholarPubMed
42. Santin, AP, Furlanetto, TW. Role of estrogen in thyroid function and growth regulation. J Thyroid Res. 2011; 2011: e875125.CrossRefGoogle ScholarPubMed
43. Schumacher, M, Coirini, H, Pfaff, DW, McEwen, BS. Behavioral effects of progesterone associated with rapid modulation of oxytocin receptors. Science. 1990; 250(4981): 691694.CrossRefGoogle ScholarPubMed
44. Walf, AA, Frye, CA. Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic–pituitary–adrenal axis activity. Neuropsychopharmacology. 2005; 30(7): 12881301.CrossRefGoogle ScholarPubMed
45. Roca, CA, Schmidt, PJ, Altemus, M, et al. Differential menstrual cycle regulation of hypothalamic-pituitary-adrenal axis in women with premenstrual syndrome and controls. J Clin Endocrinol Metab. 2003; 88(7): 30573063.Google Scholar
46. Butts, CL, Sternberg, EM. Neuroendocrine factors alter host defense by modulating immune function. Cell Immunol. 2008; 252(1–2): 715.CrossRefGoogle ScholarPubMed
47. Bunevicius, R, Kusminskas, L, Mickuviene, N, Bunevicius, A, Pedersen, CA, Pop, VJM. Depressive disorder and thyroid axis functioning during pregnancy. World J Biol Psychiatry. 2009; 10(4): 324329.Google Scholar
48. Placidi, GPA, Boldrini, M, Patronelli, A, et al. Prevalence of psychiatric disorders in thyroid diseased patients. Neuropsychobiology. 1998; 38(4): 222225.CrossRefGoogle ScholarPubMed
49. Gulseren, S, Gulseren, L, Hekimsoy, Z, Cetinay, P, Ozen, C, Tokatlioglu, B. Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch Med Res. 2006; 37(1): 133139.CrossRefGoogle ScholarPubMed
50. Berent, D, Zboralski, K, Orzechowska, A, Gałecki, P. Thyroid hormones association with depression severity and clinical outcome in patients with major depressive disorder. Mol Biol Rep. 2014; 41(4): 24192425.CrossRefGoogle ScholarPubMed
51. Nemeroff, CB, Simon, JS, Haggerty, JJ Jr, Evans, DL. Antithyroid antibodies in depressed patients. Am J Psychiatry. 1985; 142(7): 840843.Google ScholarPubMed
52. Cooper-Kazaz, R, Lerer, B. Efficacy and safety of triiodothyronine supplementation in patients with major depressive disorder treated with specific serotonin reuptake inhibitors. Int J Neuropsychopharmacol. 2008; 11(5): 685699.Google Scholar
53. Cooper-Kazaz, R, Apter, JT, Cohen, R, et al. Combined treatment with sertraline and liothyronine in major depression: a randomized, double-blind, placebo-controlled trial. Arch Gen Psychiatry. 2007; 64(6): 679688.Google Scholar
54. Ben-Rafael, Z, Struass, JF 3rd, Arendash-Durand, B, Mastroianni, L Jr, Flickinger, GL. Changes in thyroid function tests and sex hormone binding globulin associated with treatment by gonadotropin. Fertil Steril. 1987; 48(2): 318320.Google Scholar
55. Arafah, BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med. 2001; 344(23): 17431749.CrossRefGoogle ScholarPubMed
56. Vaidya, B, Anthony, S, Bilous, M, et al. Detection of thyroid dysfunction in early pregnancy: universal screening or targeted high-risk case finding? J Clin Endocrinol Metab. 2007; 92(1): 203207.Google Scholar
57. Pedersen, CA, Johnson, JL, Silva, S, et al. Antenatal thyroid correlates of postpartum depression. Psychoneuroendocrinology. 2007; 32(3): 235245.Google Scholar
58. Pedersen, CA, Stern, RA, Pate, J, Senger, MA, Bowes, WA, Mason, GA. Thyroid and adrenal measures during late pregnancy and the puerperium in women who have been major depressed or who become dysphoric postpartum. J Affect Disord. 1993; 29(2–3): 201211.CrossRefGoogle ScholarPubMed
59. Bloch, M, Daly, RC, Rubinow, DR. Endocrine factors in the etiology of postpartum depression. Compr Psychiatry. 2003; 44(3): 234246.CrossRefGoogle ScholarPubMed
60. Albacar, G, Sans, T, Martín-Santos, R, et al. Thyroid function 48h after delivery as a marker for subsequent postpartum depression. Psychoneuroendocrinology. 2010; 35(5): 738742.Google Scholar
61. Kent, GN, Stuckey, BG, Allen, JR, Lambert, T, Gee, V. Postpartum thyroid dysfunction: clinical assessment and relationship to psychiatric affective morbidity. Clin Endocrinol (Oxf). 1999; 51(4): 429438.Google Scholar
62. Stuebe, AM, Grewen, K, Pedersen, CA, Propper, C, Meltzer-Brody, S. Failed lactation and perinatal depression: common problems with shared neuroendocrine mechanisms? J Womens Health (Larchmt). 2012; 21(3): 264272.CrossRefGoogle ScholarPubMed
63. Stuebe, AM, Grewen, K, Meltzer-Brody, S. Association between maternal mood and oxytocin response to breastfeeding. J Womens Health (Larchmt). 2013; 22(4): 352361.CrossRefGoogle ScholarPubMed
64. Amico, JA, Crowley, RS, Insel, TR, Thomas, A, O’Keefe, JA. Effect of gonadal steroids upon hypothalamic oxytocin expression. Adv Exp Med Biol. 1995; 395: 2335.Google Scholar
65. Broad, KD, Kendrick, KM, Sirinathsinghji, DJS, Keverne, EB. Changes in oxytocin immunoreactivity and mRNA expression in the sheep brain during pregnancy, parturition and lactation and in response to oestrogen and progesterone. J Neuroendocrinol. 1993; 5(4): 435444.CrossRefGoogle ScholarPubMed
66. Skrundz, M, Bolten, M, Nast, I, Hellhammer, DH, Meinlschmidt, G. Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology. 2011; 36(9): 18861893.Google Scholar
67. Apter-Levy, Y, Feldman, M, Vakart, A, Ebstein, RP, Feldman, R. Impact of maternal depression across the first 6 years of life on the child’s mental health, social engagement, and empathy: the moderating role of oxytocin. Am J Psychiatry. 2013; 170(10): 11611168.CrossRefGoogle ScholarPubMed
68. Kim, S, Soeken, TA, Cromer, SJ, Martinez, SR, Hardy, LR, Strathearn, L. Oxytocin and postpartum depression: delivering on what’s known and what’s not. Brain Res. 2014; 1580: 219232.Google Scholar
69. Mah, BL, Van IJzendoorn, MH, Smith, R, Bakermans-Kranenburg, MJ. Oxytocin in postnatally depressed mothers: its influence on mood and expressed emotion. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 40: 267272.CrossRefGoogle ScholarPubMed
70. Nestler, EJ, Barrot, M, DiLeone, RJ, Eisch, AJ, Gold, SJ, Monteggia, LM. Neurobiology of depression. Neuron. 2002; 34(1): 1325.Google Scholar
71. Heim, C, Newport, DJ, Wagner, D, Wilcox, MM, Miller, AH, Nemeroff, CB. The role of early adverse experience and adulthood stress in the prediction of neuroendocrine stress reactivity in women: a multiple regression analysis. Depress Anxiety. 2002; 15(3): 117125.CrossRefGoogle ScholarPubMed
72. Records, K, Rice, MJ. A comparative study of postpartum depression in abused and nonabused women. Arch Psychiatr Nurs. 2005; 19(6): 281290.CrossRefGoogle Scholar
73. Ross, LE, Dennis, CL. The prevalence of postpartum depression among women with substance use, an abuse history, or chronic illness: a systematic review. J Womens Health (Larchmt). 2009; 18(4): 475486.Google Scholar
74. Mastorakos, G, Ilias, I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci. 2003; 997: 136149.CrossRefGoogle ScholarPubMed
75. Young, EA. Glucocorticoid cascade hypothesis revisited: role of gonadal steroids. Depression. 1995; 3(1–2): 2027.Google Scholar
76. Vamvakopoulos, NC, Chrousos, GP. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression: potential implications for the sexual dimorphism of the stress response and immune/inflammatory reaction. J Clin Invest. 1993; 92(4): 18961902.Google Scholar
77. Jolley, SN, Elmore, S, Barnard, KE, Carr, DB. Dysregulation of the hypothalamic-pituitary-adrenal axis in postpartum depression. Biol Res Nurs. 2007; 8(3): 210222.CrossRefGoogle ScholarPubMed
78. Handley, SL, Dunn, TL, Waldron, G, Baker, JM. Tryptophan, cortisol and puerperal mood. Br J Psychiatry. 1980; 136(5): 498508.Google Scholar
79. Corwin, EJ, Pajer, K. The psychoneuroimmunology of postpartum depression. J Womens Health (Larchmt). 2008; 17(9): 15291534.Google Scholar
80. Dowlati, Y, Herrmann, N, Swardfager, W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010; 67(5): 446457.CrossRefGoogle ScholarPubMed
81. Raison, CL, Capuron, L, Miller, AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006; 27(1): 2431.Google Scholar
82. Cunningham, M, Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol. 2011; 40(1): 6673.Google Scholar
83. Segman, RH, Goltser-Dubner, T, Weiner, I, et al. Blood mononuclear cell gene expression signature of postpartum depression. Mol Psychiatry. 2010; 15(1): 93100, 102.Google Scholar
84. Krause, D, Jobst, A, Kirchberg, F, et al. Prenatal immunologic predictors of postpartum depressive symptoms: a prospective study for potential diagnostic markers. Eur Arch Psychiatry Clin Neurosci. In press. DOI: 10.1007/s00406-014-0494-8.CrossRefGoogle Scholar
85. Blackmore, ER, Moynihan, JA, Rubinow, DR, Pressman, EK, Gilchrist, M, O’Connor, TG. Psychiatric symptoms and proinflammatory cytokines in pregnancy. Psychosom Med. 2011; 73(8): 656663.Google Scholar
86. Blackmore, ER, Groth, SW, Chen, DG, Gilchrist, MA, O’Connor, TG, Moynihan, JA. Depressive symptoms and proinflammatory cytokines across the perinatal period in African American women. J Psychosom Obstet Gynaecol. 2013; 35(1): 815.Google Scholar
87. Okun, ML, Luther, J, Prather, AA, Perel, JM, Wisniewski, S, Wisner, KL. Changes in sleep quality, but not hormones predict time to postpartum depression recurrence. J Affect Disord. 2011; 130(3): 378384.Google Scholar
88. Murphy-Eberenz, K, Zandi, PP, March, D, et al. Is perinatal depression familial? J Affect Disord. 2006; 90(1): 4955.Google Scholar
89. Treloar, SA, Martin, NG, Bucholz, KK, Madden, PA, Heath, AC. Genetic influences on post-natal depressive symptoms: findings from an Australian twin sample. Psychol Med. 1999; 29(3): 645654.Google Scholar
90. Figueira, P, Malloy-Diniz, L, Campos, SB, et al. An association study between the Val66Met polymorphism of the BDNF gene and postpartum depression. Arch Womens Ment Health. 2010; 13(3): 285289.Google Scholar
91. Comasco, E, Sylvén, SM, Papadopoulos, FC, Oreland, L, Sundström-Poromaa, I, Skalkidou, A. Postpartum depressive symptoms and the BDNF Val66Met functional polymorphism: effect of season of delivery. Arch Womens Ment Health. 2011; 14(6): 453463.CrossRefGoogle ScholarPubMed
92. Comasco, E, Sylvén, SM, Papadopoulos, FC, Sundström-Poromaa, I, Oreland, L, Skalkidou, A. Postpartum depression symptoms: a case-control study on monoaminergic functional polymorphisms and environmental stressors. Psychiatr Genet. 2011; 21(1): 1928.Google Scholar
93. Alvim-Soares, A, Miranda, D, Campos, SB, Figueira, P, Romano-Silva, MA, Correa, H. Postpartum depression symptoms associated with Val158Met COMT polymorphism. Arch Womens Ment Health. 2013; 16(4): 339340.Google Scholar
94. Engineer, N, Darwin, L, Nishigandh, D, Ngianga-Bakwin, K, Smith, SC, Grammatopoulos, DK. Association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants and risk for depression during pregnancy and post-partum. J Psychiatr Res. 2013; 47(9): 11661173.Google Scholar
95. Binder, EB, Newport, DJ, Zach, EB, et al. A serotonin transporter gene polymorphism predicts peripartum depressive symptoms in an at-risk psychiatric cohort. J Psychiatr Res. 2010; 44(10): 640646.Google Scholar
96. Mitchell, C, Notterman, D, Brooks-Gunn, J, et al. Role of mother’s genes and environment in postpartum depression. Proc Natl Acad Sci U S A. 2011; 108(20): 81898193.Google Scholar
97. El-Ibiary, SY, Hamilton, SP, Abel, R, Erdman, CA, Robertson, PA, Finley, PR. A pilot study evaluating genetic and environmental factors for postpartum depression. Innov Clin Neurosci. 2013; 10(9–10): 1522.Google Scholar
98. Costas, J, Gratacòs, M, Escaramís, G, et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J Psychiatr Res. 2010; 44(11): 717724.Google Scholar
99. Pinsonneault, JK, Sullivan, D, Sadee, W, Soares, CN, Hampson, E, Steiner, M. Association study of the estrogen receptor gene ESR1 with postpartum depression—a pilot study. Arch Womens Ment Health. 2013; 16(6): 499509.Google Scholar
100. Pinheiro, RT, Coelho, FM, Silva, RA, et al. Association of a serotonin transporter gene polymorphism (5-HTTLPR) and stressful life events with postpartum depressive symptoms: a population-based study. J Psychosom Obstet Gynaecol. 2013; 34(1): 2933.Google Scholar
101. Mahon, PB, Payne, JL, MacKinnon, DF, et al. Genome-wide linkage and follow-up association study of postpartum mood symptoms. Am J Psychiatry. 2009; 166(11): 12291237.Google Scholar
102. Alvim-Soares, AM, Miranda, DM, Campos, SB, Figueira, P, Correa, H, Romano-Silva, MA. HMNC1 gene polymorphism associated with postpartum depression. Rev Bras Psiquiatr. 2014; 36(1): 9697.CrossRefGoogle ScholarPubMed
103. Mehta, D, Newport, DJ, Frishman, G, et al. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med. 2014; 44(11): 23092322.Google Scholar
104. Guintivano, J, Arad, M, Gould, TD, Payne, JL, Kaminsky, ZA. Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry. 2014; 19(5): 560567.CrossRefGoogle ScholarPubMed
105. Green, AD, Barr, AM, Galea, LAM. Role of estradiol withdrawal in “anhedonic” sucrose consumption: a model of postpartum depression. Physiol Behav. 2009; 97(2): 259265.Google Scholar
106. Bekku, N, Yoshimura, H. Animal model of menopausal depressive-like state in female mice: prolongation of immobility time in the forced swimming test following ovariectomy. Psychopharmacology (Berl). 2005; 183(3): 300307.CrossRefGoogle Scholar
107. Bernardi, M, Vergoni, AV, Sandrini, M, Tagliavini, S, Bertolini, A. Influence of ovariectomy, estradiol and progesterone on the behavior of mice in an experimental model of depression. Physiol Behav. 1989; 45(5): 10671068.Google Scholar
108. Estrada-Camarena, E, Fernandez-Guasti, A, Lopez-Rubalcava, C. Antidepressant-like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology. 2003; 28(5): 830838.Google Scholar
109. Walf, AA, Rhodes, ME, Frye, CA. Antidepressant effects of ERbeta-selective estrogen receptor modulators in the forced swim test. Pharmacol Biochem Behav. 2004; 78(3): 523529.CrossRefGoogle ScholarPubMed
110. Walf, AA, Frye, CA. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology. 2006; 31(6): 10971111.CrossRefGoogle ScholarPubMed
111. Maayan, R, Strous, RD, Abou-Kaoud, M, Weizman, A. The effect of 17beta estradiol withdrawal on the level of brain and peripheral neurosteroids in ovarectomized rats. Neurosci Lett. 2005; 384(1–2): 156161.Google Scholar
112. Bossé, R, Rivest, R, Di Paolo, T. Ovariectomy and estradiol treatment affect the dopamine transporter and its gene expression in the rat brain. Brain Res Mol Brain Res. 1997; 46(1–2): 343346.Google Scholar
113. Di Paolo, T, Poyet, P, Labrie, F. Effect of prolactin and estradiol on rat striatal dopamine receptors. Life Sci. 1982; 31(25): 29212929.Google Scholar
114. Di Paolo, T, Poyet, P, Labrie, F. Prolactin and estradiol increase striatal dopamine receptor density in intact, castrated and hypophysectomized rats. Prog Neuropsychopharmacol Biol Psychiatry. 1982; 6(4–6): 377382.Google Scholar
115. Byrnes, EM, Byrnes, JJ, Bridges, RS. Increased sensitivity of dopamine systems following reproductive experience in rats. Pharmacol Biochem Behav. 2001; 68(3): 481489.Google Scholar
116. Wenzel, A, Haugen, EN, Jackson, LC, Brendle, JR. Anxiety symptoms and disorders at eight weeks postpartum. J Anxiety Disord. 2005; 19(3): 295311.CrossRefGoogle ScholarPubMed
117. Beckley, EH, Finn, DA. Inhibition of progesterone metabolism mimics the effect of progesterone withdrawal on forced swim test immobility. Pharmacol Biochem Behav. 2007; 87(4): 412419.Google Scholar
118. Smith, SS, Gong, QH, Li, X, et al. Withdrawal from 3α-OH-5α-pregnan-20-one using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor α4 subunit in association with increased anxiety. J Neurosci. 1998; 18(14): 52755284.CrossRefGoogle ScholarPubMed
119. Dennerstein, L, Spencer-Gardner, C, Gotts, G, Brown, JB, Smith, MA, Burrows, GD. Progesterone and the premenstrual syndrome: a double blind crossover trial. Br Med J (Clin Res Ed). 1985; 290(6482): 16171621.Google Scholar
120. Frye, CA, Walf, AA. Hippocampal 3α,5α-THP may alter depressive behavior of pregnant and lactating rats. Pharmacol Biochem Behav. 2004; 78(3): 531540.CrossRefGoogle Scholar
121. Chatzicharalampous, C, Rizos, D, Pliatsika, P, et al. Reproductive hormones and postpartum mood disturbances in Greek women. Gynecol Endocrinol. 2010; 27(8): 543550.Google Scholar
122. Silverman, ME, Loudon, H, Safier, M, et al. Neural dysfunction in postpartum depression: an fMRI pilot study. CNS Spectr. 2007; 12(11): 853862.Google Scholar
123. Moses-Kolko, EL, Perlman, SB, Wisner, KL, James, J, Saul, AT, Phillips, ML. Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry. 2010; 167(11): 13731380.Google Scholar
124. Moses-Kolko, EL, Fraser, D, Wisner, KL, et al. Rapid habituation of ventral striatal response to reward receipt in postpartum depression. Biol Psychiatry. 2011; 70(4): 395399.Google Scholar
125. Goodyer, IM, Herbert, J, Altham, PM, Pearson, J, Secher, SM, Shiers, HM. Adrenal secretion during major depression in 8- to 16-year-olds, I. Altered diurnal rhythms in salivary cortisol and dehydroepiandrosterone (DHEA) at presentation. Psychol Med. 1996; 26(2): 245256.Google Scholar
126. Yaffe, K, Ettinger, B, Pressman, A, et al. Neuropsychiatric function and dehydroepiandrosterone sulfate in elderly women: a prospective study. Biol Psychiatry. 1998; 43(9): 694700.Google Scholar
127. Heuser, I, Deuschle, M, Luppa, P, Schweiger, U, Standhardt, H, Weber, B. Increased diurnal plasma concentrations of dehydroepiandrosterone in depressed patients. J Clin Endocrinol Metab. 1998; 83(9): 31303133.Google Scholar
128. Michael, A, Jenaway, A, Paykel, ES, Herbert, J. Altered salivary dehydroepiandrosterone levels in major depression in adults. Biol Psychiatry. 2000; 48(10): 989995.Google Scholar
129. Schmidt, PJ, Murphy, JH, Haq, N, Danaceau, MA, St Clair, L. Basal plasma hormone levels in depressed perimenopausal women. Psychoneuroendocrinology. 2002; 27(8): 907920.Google Scholar
130. Wolkowitz, OM, Reus, VI, Keebler, A, et al. Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry. 1999; 156(4): 646649.Google Scholar
131. Schmidt, P, Daly, RC, Bloch, M, et al. Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Arch Gen Psychiatry. 2005; 62(2): 154162.Google Scholar
132. Majewska, MD, Harrison, NL, Schwartz, RD, Barker, JL, Paul, SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986; 232(4753): 10041007.Google Scholar
133. Bitran, D, Hilvers, RJ, Kellogg, CK. Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res. 1991; 561(1): 157161.Google Scholar
134. Wieland, S, Lan, NC, Mirasedeghi, S, Gee, KW. Anxiolytic activity of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Brain Res. 1991; 565(2): 263268.Google Scholar
135. Bitran, D, Purdy, RH, Kellog, CK. Anxiolytic effect of progesterone is associated with increases in cortical alloprenanolone and GABAA receptor function. Pharmacol Biochem Behav. 1993; 45(2): 423428.Google Scholar
136. Smith, SS, Gong, QH, Hsu, FC, Markowitz, RS, ffrench-Mullen, JM, Li, X. GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature. 1998; 392(6679): 926930.Google Scholar
137. Uzunova, V, Sheline, Y, Davis, JM, et al. Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci U S A. 1998; 95(6): 32393244.Google Scholar
138. Romeo, E, Ströhle, A, Spalletta, G, et al. Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry. 1998; 155(7): 910913.Google Scholar
139. Ströhle, A, Romeo, E, Hermann, B, et al. Concentrations of 3α-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psychiatry. 1999; 45(3): 274277.Google Scholar
140. Schüle, C, Romeo, E, Uzunov, DP, et al. Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3α-hydroxysteroid dehydrogenase activity. Mol Psychiatry. 2005; 11(3): 261272.Google Scholar
141. Eser, D, Schüle, C, Baghai, TC, Romeo, E, Rupprecht, R. Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology. 2006; 84(4): 244254.CrossRefGoogle ScholarPubMed
142. Schüle, C, Baghai, TC, di Michele, F, et al. Effects of combination treatment with mood stabilizers and mirtazapine on plasma concentrations of neuroactive steroids in depressed patients. Psychoneuroendocrinology. 2007; 32(6): 669680.Google Scholar
143. Patchev, VK, Shoaib, M, Holsboer, F, Almeida, OFX. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience. 1994; 62(1): 265271.Google Scholar
144. Patchev, VK, Hassan, AHS, Holsboer, F, Almeida, OFX. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology. 1996; 15(6): 533540.Google Scholar
145. Barbaccia, ML, Roscetti, G, Trabucchi, M, et al. The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol. 1997; 120(8): 15821588.CrossRefGoogle ScholarPubMed
146. Kehoe, P, Mallinson, K, McCormick, CM, Frye, CA. Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Brain Res Dev Brain Res. 2000; 124(1–2): 133136.Google Scholar
147. Djebaili, M, Guo, Q, Pettus, EH, Hoffman, SW, Stein, DG. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma. 2005; 22(1): 106118.Google Scholar
148. Sayeed, I, Parvez, S, Wali, B, Siemen, D, Stein, DG. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res. 2009; 1263: 165173.Google Scholar
149. He, J, Evans, C-O, Hoffman, SW, Oyesiku, NM, Stein, DG. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol. 2004; 189(2): 404412.Google Scholar
150. Bixo, M, Andersson, A, Winblad, B, Purdy, RH, Bäckström, T. Progesterone, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997; 764(1–2): 173178.Google Scholar
151. Akwa, Y, Purdy, RH, Koob, GF, Britton, KT. The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res. 1999; 106(1–2): 119125.Google Scholar
152. Epperson, CN, Gueorguieva, R, Czarkowski, KA, et al. Preliminary evidence of reduced occipital GABA concentrations in puerperal women: a 1H-MRS study. Psychopharmacology (Berl). 2006; 186(3): 425433.Google Scholar
153. Schiller, CE, Schmidt, PJ, Rubinow, DR. Allopregnanolone as a mediator of affective switching in reproductive mood disorders. Psychopharmacology (Berl). 2014; 231(17): 35573567.Google Scholar
154. Tarantino, LM, Sullivan, PF, Meltzer-Brody, S. Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression. Front Psychiatry. 2011; 2: 44.Google Scholar
155. Maguire, J, Mody, I. GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron. 2008; 59(2): 207213.Google Scholar
156. Maguire, JL, Stell, BM, Rafizadeh, M, Mody, I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci. 2005; 8(6): 797804.CrossRefGoogle ScholarPubMed
157. Maguire, J, Ferando, I, Simonsen, C, Mody, I. Excitability changes related to GABAA receptor plasticity during pregnancy. J Neurosci. 2009; 29(30): 95929601.Google Scholar